The limit of the anisotropic double-obstacle Allen–Cahn equation

1996 ◽  
Vol 126 (6) ◽  
pp. 1217-1234 ◽  
Author(s):  
Charles M. Elliott ◽  
Reiner Schätzle

In this paper, we prove that solutions of the anisotropic Allen–Cahn equation in doubleobstacle formwhere A is a strictly convex function, homogeneous of degree two, converge to an anisotropic mean-curvature flowwhen this equation admits a smooth solution in ℝn. Here VN and R respectively denote the normal velocity and the second fundamental form of the interface, and More precisely, we show that the Hausdorff-distance between the zero-level set of φ and the interface of the above anisotropic mean-curvature flow is of order O(ε2).

1996 ◽  
Vol 06 (08) ◽  
pp. 1103-1118 ◽  
Author(s):  
CHARLES M. ELLIOTT ◽  
MAURIZIO PAOLINI ◽  
REINER SCHÄTZLE

In this paper, we prove that solutions of the anisotropic Allen-Cahn equation in double-obstacle form with kinetic term [Formula: see text] in {|φ|<1}, where A is a convex function, homogeneous of degree two, and β depends only on the direction of ∇φ, converge to an anisotropic mean-curvature flow [Formula: see text] Here VN and R denote respectively the normal velocity and the second fundamental form of the interface, and [Formula: see text]. We prove this in the case when the above flow admits a smooth solution, and we establish that the Hausdorff-distance between the zero-level set of φ and the interface of the flow is of order O(ε2).


Author(s):  
Knut Smoczyk

AbstractWe study self-expanding solutions $M^{m}\subset \mathbb {R}^{n}$ M m ⊂ ℝ n of the mean curvature flow. One of our main results is, that complete mean convex self-expanding hypersurfaces are products of self-expanding curves and flat subspaces, if and only if the function |A|2/|H|2 attains a local maximum, where A denotes the second fundamental form and H the mean curvature vector of M. If the principal normal ξ = H/|H| is parallel in the normal bundle, then a similar result holds in higher codimension for the function |Aξ|2/|H|2, where Aξ is the second fundamental form with respect to ξ. As a corollary we obtain that complete mean convex self-expanders attain strictly positive scalar curvature, if they are smoothly asymptotic to cones of non-negative scalar curvature. In particular, in dimension 2 any mean convex self-expander that is asymptotic to a cone must be strictly convex.


2020 ◽  
Vol 102 (1) ◽  
pp. 162-171
Author(s):  
ZHENGCHAO JI

We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find conditions on the second fundamental form that characterise the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension two surfaces.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


2015 ◽  
Vol 17 (05) ◽  
pp. 1450041
Author(s):  
Adriano Pisante ◽  
Fabio Punzo

We prove convergence of solutions to the parabolic Allen–Cahn equation to Brakke's motion by mean curvature in Riemannian manifolds with Ricci curvature bounded from below. Our results hold for a general class of initial conditions and extend previous results from [T. Ilmanen, Convergence of the Allen–Cahn equation to the Brakke's motion by mean curvature, J. Differential Geom. 31 (1993) 417–461] even in Euclidean space. We show that a sequence of measures, associated to energy density of solutions of the parabolic Allen–Cahn equation, converges in the limit to a family of rectifiable Radon measures, which evolves by mean curvature flow in the sense of Brakke. A key role is played by nonpositivity of the limiting energy discrepancy and a local almost monotonicity formula (a weak counterpart of Huisken's monotonicity formula) proved in [Allen–Cahn approximation of mean curvature flow in Riemannian manifolds, I, uniform estimates, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci.; arXiv:1308.0569], to get various density bounds for the limiting measures.


2015 ◽  
Vol 26 (4) ◽  
pp. 535-559 ◽  
Author(s):  
D. S. LEE ◽  
J. S. KIM

In this paper, we investigate motion by mean curvature using the Allen–Cahn (AC) equation in two and three space dimensions. We use an unconditionally stable hybrid numerical scheme to solve the equation. Numerical experiments demonstrate that we can use the AC equation for applications to motion by mean curvature. We also study the curve-shortening flow with a prescribed contact angle condition.


Author(s):  
Annalisa Cesaroni ◽  
Heiko Kröner ◽  
Matteo Novaga

We consider the anisotropic mean curvature flow of entire Lipschitz graphs. We prove existence and uniqueness of expanding self-similar solutions which are asymptotic to a prescribed cone, and we characterize the long time behavior of solutions, after suitable rescaling, when the initial datum is a sublinear perturbation of a cone. In the case of regular anisotropies, we prove the stability of self-similar solutions asymptotic to strictly mean convex cones, with respect to perturbations vanishing at infinity. We also show the stability of hyperplanes, with a proof which is novel also for the isotropic mean curvature flow.


Sign in / Sign up

Export Citation Format

Share Document