scholarly journals The separation of the Hamilton-Jacobi equation for the Kerr metric

Author(s):  
G. E. Prince ◽  
J. E. Aldridge ◽  
S. E. Godfrey ◽  
G. B. Byrnes

AbstractWe discuss the separability of the Hamilton-Jacobi equation for the Kerr metric. We use a recent theorem which says that a completely integrable geodesic equation has a fully separable Hamilton-Jacobi equation if and only if the Lagrangian is a composite of the involutive first integrals. We also discuss the physical significance of Carter's fourth constant in terms of the symplectic reduction of the Schwarzschild metric via SO(3), showing that the Killing tensor quantity is the remnant of the square of angular momentum.

The properties of coordinate systems that admit separation of the Laplacian and Hamilton–Jacobi operators have been thoroughly explored so that the nature of solutions in separable form of Laplace’s equation, the wave equation, Schrödinger’s equation and the Hamilton–Jacobi equation are well understood. The corresponding problems for the Dirac operator in flat spacetime have been less completely examined and this paper contains studies intended to produce a more systematic account of possible solutions of Dirac’s equation. Because the Dirac operator differs from the Laplacian in being a first-degree differential operator and in having matrix coefficients, it is not possible to discuss possible solutions in as general a way and the separable solutions are far less rich than for equations with the Laplacian. In particular, the forms of the potentials for which separable solutions are possible are not for the most part of physical interest. Although the discussion is confined to coordinates in flat space–time, some of the procedures are derived from those developed to solve Dirac’s equation in coordinates with a Kerr metric.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 473
Author(s):  
Joshua Baines ◽  
Thomas Berry ◽  
Alex Simpson ◽  
Matt Visser

Recently, the authors have formulated and explored a novel Painlevé–Gullstrand variant of the Lense–Thirring spacetime, which has some particularly elegant features, including unit-lapse, intrinsically flat spatial 3-slices, and some particularly simple geodesics—the “rain” geodesics. At the linear level in the rotation parameter, this spacetime is indistinguishable from the usual slow-rotation expansion of Kerr. Herein, we shall show that this spacetime possesses a nontrivial Killing tensor, implying separability of the Hamilton–Jacobi equation. Furthermore, we shall show that the Klein–Gordon equation is also separable on this spacetime. However, while the Killing tensor has a 2-form square root, we shall see that this 2-form square root of the Killing tensor is not a Killing–Yano tensor. Finally, the Killing-tensor-induced Carter constant is easily extracted, and now, with a fourth constant of motion, the geodesics become (in principle) explicitly integrable.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


Author(s):  
Jennifer Coopersmith

Hamilton’s genius was to understand what were the true variables of mechanics (the “p − q,” conjugate coordinates, or canonical variables), and this led to Hamilton’s Mechanics which could obtain qualitative answers to a wider ranger of problems than Lagrangian Mechanics. It is explained how Hamilton’s canonical equations arise, why the Hamiltonian is the “central conception of all modern theory” (quote of Schrödinger’s), what the “p − q” variables are, and what phase space is. It is also explained how the famous conservation theorems arise (for energy, linear momentum, and angular momentum), and the connection with symmetry. The Hamilton-Jacobi Equation is derived using infinitesimal canonical transformations (ICTs), and predicts wavefronts of “common action” spreading out in (configuration) space. An analogy can be made with geometrical optics and Huygen’s Principle for the spreading out of light waves. It is shown how Hamilton’s Mechanics can lead into quantum mechanics.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the Kerr metric, which is an exact solution of the Einstein vacuum equations. The Kerr metric provides a good approximation of the spacetime near each of the many rotating black holes in the observable universe. This chapter shows that the Einstein equations are nonlinear. However, there exists a class of metrics which linearize them. It demonstrates the Kerr–Schild metrics, before arriving at the Kerr solution in the Kerr–Schild metrics. Since the Kerr solution is stationary and axially symmetric, this chapter shows that the geodesic equation possesses two first integrals. Finally, the chapter turns to the Kerr black hole, as well as its curvature singularity, horizons, static limit, and maximal extension.


Author(s):  
Razvan Gabriel Iagar ◽  
Philippe Laurençot

A classification of the behaviour of the solutions f(·, a) to the ordinary differential equation (|f′|p-2f′)′ + f - |f′|p-1 = 0 in (0,∞) with initial condition f(0, a) = a and f′(0, a) = 0 is provided, according to the value of the parameter a > 0 when the exponent p takes values in (1, 2). There is a threshold value a* that separates different behaviours of f(·, a): if a > a*, then f(·, a) vanishes at least once in (0,∞) and takes negative values, while f(·, a) is positive in (0,∞) and decays algebraically to zero as r→∞ if a ∊ (0, a*). At the threshold value, f(·, a*) is also positive in (0,∞) but decays exponentially fast to zero as r→∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton–Jacobi equation with critical gradient absorption and fast diffusion.


Sign in / Sign up

Export Citation Format

Share Document