killing tensor
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Geoffrey Compère ◽  
Adrien Druart

We revisit the conserved quantities of the Mathisson-Papapetrou-Tulczyjew equations describing the motion of spinning particles on a fixed background. Assuming Ricci-flatness and the existence of a Killing-Yano tensor, we demonstrate that besides the two non-trivial quasi-conserved quantities, i.e. conserved at linear order in the spin, found by Rüdiger, non-trivial quasi-conserved quantities are in one-to-one correspondence with non-trivial mixed-symmetry Killing tensors. We prove that no such stationary and axisymmetric mixed-symmetry Killing tensor exists on the Kerr geometry. We discuss the implications for the motion of spinning particles on Kerr spacetime where the quasi-constants of motion are shown not to be in complete involution.


2021 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Vladimir A. Sharafutdinov

A rank m symmetric tensor field on a Riemannian manifold is called a Killing field if the symmetric part of its covariant derivative is equal to zero. Such a field determines the first integral of the geodesic flow which is a degree m homogeneous polynomial in velocities. There exist global isothermal coordinates on a two-dimensional Riemannian torus such that the metric is of the form ds^2= λ(z)|dz|^2 in the coordinates. The torus admits a third rank Killing tensor field if and only if the function λ satisfies the equation R(∂/∂z(λ(c∆^-1λ_zz+a))= 0 with some complex constants a and c≠0. The latter equation is equivalent to some system of quadratic equations relating Fourier coefficients of the function λ. If the functions λ and λ + λ_0 satisfy the equation for a real constant λ0, 0, then there exists a non-zero Killing vector field on the torus.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 473
Author(s):  
Joshua Baines ◽  
Thomas Berry ◽  
Alex Simpson ◽  
Matt Visser

Recently, the authors have formulated and explored a novel Painlevé–Gullstrand variant of the Lense–Thirring spacetime, which has some particularly elegant features, including unit-lapse, intrinsically flat spatial 3-slices, and some particularly simple geodesics—the “rain” geodesics. At the linear level in the rotation parameter, this spacetime is indistinguishable from the usual slow-rotation expansion of Kerr. Herein, we shall show that this spacetime possesses a nontrivial Killing tensor, implying separability of the Hamilton–Jacobi equation. Furthermore, we shall show that the Klein–Gordon equation is also separable on this spacetime. However, while the Killing tensor has a 2-form square root, we shall see that this 2-form square root of the Killing tensor is not a Killing–Yano tensor. Finally, the Killing-tensor-induced Carter constant is easily extracted, and now, with a fourth constant of motion, the geodesics become (in principle) explicitly integrable.


2021 ◽  
Vol 71 (6) ◽  
pp. 1553-1564
Author(s):  
Kazuhiro Okumura

Abstract In this paper, we give the complete classification of real hypersurfaces in a nonflat complex space form from the viewpoint of the η-parallelism of the tensor field h(= (1/2)𝓛 ξ ϕ). In addition we investigate real hypersurfaces whose tensor h is either Killing type or transversally Killing tensor. In particular, we shall determine Hopf hypersurfaces whose tensor h is transversally Killing tensor by using an application of the classification of real hypersurfaces admitting η-parallelism with respect to the tensor h.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1503
Author(s):  
Antonios Mitsopoulos ◽  
Michael Tsamparlis

We consider the time-dependent dynamical system q¨a=−Γbcaq˙bq˙c−ω(t)Qa(q) where ω(t) is a non-zero arbitrary function and the connection coefficients Γbca are computed from the kinetic metric (kinetic energy) of the system. In order to determine the quadratic first integrals (QFIs) I we assume that I=Kabq˙aq˙b+Kaq˙a+K where the unknown coefficients Kab,Ka,K are tensors depending on t,qa and impose the condition dIdt=0. This condition leads to a system of partial differential equations (PDEs) involving the quantities Kab,Ka,K,ω(t) and Qa(q). From these PDEs, it follows that Kab is a Killing tensor (KT) of the kinetic metric. We use the KT Kab in two ways: a. We assume a general polynomial form in t both for Kab and Ka; b. We express Kab in a basis of the KTs of order 2 of the kinetic metric assuming the coefficients to be functions of t. In both cases, this leads to a new system of PDEs whose solution requires that we specify either ω(t) or Qa(q). We consider first that ω(t) is a general polynomial in t and find that in this case the dynamical system admits two independent QFIs which we collect in a Theorem. Next, we specify the quantities Qa(q) to be the generalized time-dependent Kepler potential V=−ω(t)rν and determine the functions ω(t) for which QFIs are admitted. We extend the discussion to the non-linear differential equation x¨=−ω(t)xμ+ϕ(t)x˙(μ≠−1) and compute the relation between the coefficients ω(t),ϕ(t) so that QFIs are admitted. We apply the results to determine the QFIs of the generalized Lane–Emden equation.


Author(s):  
Alexander V. Balandin

This article describes necessary conditions for chiral-type systems to admit Lax representation with values in simple compact Lie algebras. These conditions state that there exists a covariant constant tensor field with an additional property. It is proposed to construct in an invariant way some covariant tensor fields using the Lax representation of the system under consideration. These fields are constructed by taking linear differential forms with values in the Lie algebra that are constructed using the Lax representation of the system and substituting them into an arbitrary Ad-invariant form on the Lie algebra. The paper proves that such tensor fields are Killing tensor fields or covariant constant fields. The discovered necessary conditions for the existence of the Lax representation are obtained using a special case of such tensor fields associated with the Killing metric of the Lie algebra.


2018 ◽  
Vol 198 (1) ◽  
pp. 307-334 ◽  
Author(s):  
A. Rod Gover ◽  
Thomas Leistner

2016 ◽  
Vol 13 (3) ◽  
Author(s):  
Isaac Ahern ◽  
Sam Cook

Killing vectors are generators of symmetries in a spacetime. This article defines certain generalizations of Killing vectors, called affine symmetry tensors, or simply affine tensors. While the affine vectors of the Minkowski spacetime are well known, and partial results for valence n = 2 have been discussed, affine tensors of valence n > 2 have never been exhibited. In this article, we discuss a computational algorithm to compute affine tensors in Minkowski spacetime, and discuss the results for affine tensors of valence 2 ≤ n ≤ 7. After comparison with analogous results concerning Killing tensors, we make several conjectures about the spaces of affine tensors in Minkowski spacetime. KEYWORDS: Affine Symmetry Tensors; Affine Vectors; Killing Tensors; Killing Vectors; Minkowski Spacetime; Dimension; Maple CAS; Lie Derivative; Generalized Killing Tensor


2016 ◽  
Vol 57 (1) ◽  
pp. 155-173 ◽  
Author(s):  
V. A. Sharafutdinov
Keyword(s):  

2014 ◽  
Vol 12 (01) ◽  
pp. 1550005
Author(s):  
E. Calviño-Louzao ◽  
E. García-Río ◽  
J. Seoane-Bascoy ◽  
R. Vázquez-Lorenzo

The Cotton tensor of three-dimensional Walker manifolds is investigated. A complete description of all locally conformally flat Walker three-manifolds is given, as well as that of Walker manifolds whose Cotton tensor is either a Codazzi or a Killing tensor.


Sign in / Sign up

Export Citation Format

Share Document