The Effect of Terrain Mask on RAIM Availability

2009 ◽  
Vol 63 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Tomislav Radišić ◽  
Doris Novak ◽  
Tino Bucak

Receiver Autonomous Integrity Monitoring (RAIM) is a method, used by an aircraft's receiver, for detecting and isolating faulty satellites of the Global Navigation Satellite System (GNSS). In order for a receiver to be able to detect and isolate a faulty satellite using a RAIM algorithm, a couple of conditions must be met: a minimum number of satellites, and an adequate satellite geometry. Due to the highly predictable orbits of the GPS satellites, a RAIM availability prediction can be done easily. A number of RAIM methods exist; however, none of them takes into account the precise terrain masking of the satellites for the specific location. They consider a uniform fixed mask angle over the whole horizon. This paper will introduce the variable mask RAIM algorithm in order to show to what extent the terrain can affect the RAIM availability and how much it differs from the conventional algorithms.

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7787
Author(s):  
Ciro Gioia ◽  
Daniele Borio

A multi-layered interference mitigation approach can significantly improve the performance of Global Navigation Satellite System (GNSS) receivers in the presence of jamming. In this work, three levels of defence are considered including: pre-correlation interference mitigation techniques, post-correlation measurement screening and FDE at the Position, Velocity, and Time (PVT) level. The performance and interaction of these receiver defences are analysed with specific focus on Robust Interference Mitigation (RIM), measurement screening through Lock Indicator (LIs) and Receiver Autonomous Integrity Monitoring (RAIM). The case of timing receivers with a known user position and using Galileo signals from different frequencies has been studied with Time-Receiver Autonomous Integrity Monitoring (T-RAIM) based on the Backward-Forward method. From the experimental analysis it emerges that RIM improves the quality of the measurements reducing the number of exclusions performed by T-RAIM. Effective measurements screening is also fundamental to obtain unbiased timing solutions: in this respect T-RAIM can provide the required level of reliability.


Author(s):  
Y. Wu ◽  
J. Ren ◽  
W. Liu

As BeiDou navigation system has been operational since December 2012. There is an increasing desire to use multiple constellation to improve positioning performance. The signal-in-space (SIS) anomaly caused by the ground control and the space vehicle is one of the major threats to affect the integrity. For a young Global Navigation Satellite System, knowledge about SIS anomalies in history is very important for not only assessing the SIS integrity performance of a constellation but also providing the assumption for ARAIM (Advanced Receiver Autonomous Integrity Monitoring). <br><br> In this paper, the broadcast ephemerides and the precise ones are pre-processed for avoiding the false anomaly identification. The SIS errors over the period of Mar. 2013-Feb. 2016 are computed by comparing the broadcast ephemerides with the precise ones. The time offsets between GPST (GPS time) and BDT (BeiDou time) are estimated and removed by an improved estimation algorithm. SIS worst-UREs are computed and a RMS criteria are investigated to identify the SIS anomalies. The results show that the probability of BeiDou SIS anomalies is in 10-3 level in last three years. Even though BeiDou SIS integrity performance currently cannot match the GPS integrity performances, the result indicates that BeiDou has a tendency to improve its integrity performance.


2013 ◽  
Vol 66 (5) ◽  
pp. 683-700 ◽  
Author(s):  
Ling Yang ◽  
Nathan L. Knight ◽  
Yong Li ◽  
Chris Rizos

In Global Navigation Satellite System (GNSS) positioning, it is standard practice to apply the Fault Detection and Exclusion (FDE) procedure iteratively, in order to exclude all faulty measurements and then ensure reliable positioning results. Since it is often only necessary to consider a single fault in a Receiver Autonomous Integrity Monitoring (RAIM) procedure, it would be ideal if a fault could be correctly identified. Thus, fault detection does not need to be applied in an iterative sense. One way of evaluating whether fault detection needs to be reapplied is to determine the probability of a wrong exclusion. To date, however, limited progress has been made in evaluating such probabilities. In this paper the relationships between different parameters are analysed in terms of the probability of correct and incorrect identification. Using this knowledge, a practical strategy for incorporating the probability of a wrong exclusion into the FDE procedure is developed. The theoretical findings are then demonstrated using a GPS single point positioning example.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4847
Author(s):  
Weichuan Pan ◽  
Xingqun Zhan ◽  
Xin Zhang ◽  
Shizhuang Wang

The advanced receiver autonomous integrity monitoring (advanced RAIM, ARAIM) is the next generation of RAIM which is widely used in civil aviation. However, the current ARAIM needs to evaluate hundreds of subsets, which results in huge computational loads. In this paper, a method using the subset excluding entire constellation to evaluate the single satellite fault subsets and the simultaneous multiple satellites fault subsets is presented. The proposed ARAIM algorithm is based on the tight integration of the global navigation satellite system (GNSS) and inertial navigation system (INS). The number of subsets that the proposed GNSS/INS ARAIM needs to consider is about 2% of that of the current ARAIM, which reduces the computational load dramatically. The detailed fault detection (FD) process and fault exclusion (FE) process of the proposed GNSS/INS ARAIM are provided. Meanwhile, the method to obtain the FD-only integrity bound and the after-exclusion integrity bound is also presented in this paper. The simulation results show that the proposed GNSS/INS ARAIM is able to find the failing satellite accurately and its integrity performance is able to meet the integrity requirements of CAT-I precision approach.


2021 ◽  
Author(s):  
Mohammad Al-Khaldi ◽  
Joel Johnson ◽  
Scott Gleason

<p>NASA's Cyclone Global Navigation Satellite System (CYGNSS) mission has continued to provide measurements of land surface specular scattering since its launch in December 2016. CYGNSS’s operates in a GNSS-R configuration in which  CYGNSS satellites together with GPS satellites form a bistatic radar geometry with GPS satellites acting as transmitters and CYGNSS satellites acting as receivers. The fundamental GNSS-R measurement obtained using the CYGNSS observatories is the delay-Doppler map (DDM), from which normalized radar cross section (NRCS) estimates are derived. The sensitivity of CYGNSS measurements to a wide range of surface properties has motivated their use for soil moisture retrievals.</p><p>This presentation reports an updated analysis of soil moisture retrieval errors using a previously reported time series soil moisture retrieval algorithm that considers a  multi-year CYGNSS dataset. The presentation also reports recent progress in which further simplifications to the proposed algorithm are introduced that limit its need for ancillary soil moisture data and promote use in an operational capacity. This is accomplished, in part, through the incorporation of a recently developed global Level-1 coherence detection methodology and the use of a soil moisture climatology.</p><p>Soil moisture is sensed using a time-series retrieval in which NRCS ratios derived from CYGNSS measurements are used to form a system of equations that can be solved for a times series of surface reflectivities. While the NRCS exhibits a dependence on a wide range of properties such as soil moisture, soil composition, vegetation cover, and surface roughness, NRCS ratios in consecutive acquisitions, at sufficiently low latency, exhibit a direct proportionality to reflectivity ratios that are a function of soil permittivity and therefore soil moisture. The dependence of NRCS ratios on reflectivity facilitates a location dependent inversion of reflectivity to soil moisture through a dielectric mixing model. The use of NRCS ratios however results in N-1 equations for the N soil moistures in the time series, thereby necessitating the incorporation of additional information typically expressed in terms of maximum and/or minimum soil moisture (or reflectivity) values over the time series when solving the system. These values can be obtained either from ancillary data from other systems or from a soil moisture climatology as incorporated in this presentation.</p><p>Retrieved moisture values from the updated algorithm are compared against observed values reported by the Soil Moisture Active Passive (SMAP) mission. The findings suggest that there exists potential for using GNSS-R systems for global soil moisture retrievals with an RMS error on the order of 0.06 cm<sup>3</sup>/cm<sup>3</sup> over varied terrain. The dependence of the algorithm’s retrieval error on land cover class, soil texture, and moisture variability trends will be reported in detail in this presentation.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 373 ◽  
Author(s):  
Lewen Zhao ◽  
Pavel Václavovic ◽  
Jan Douša

The tropospheric delays estimated from the Global Navigation Satellite System (GNSS) have been proven to be an efficient product for monitoring variations of water vapor, which plays an important role in meteorology applications. The operational GNSS water vapor monitoring system is currently based on the Global Positioning System (GPS) and GLObal NAvigation Satellite System(GLONASS) dual-frequency observations. The Galileo satellite navigation system has been evolving continuously, and on 11 February 2019, the constellation reached 22 active satellites, achieving a capability of standalone Precise Point Positioning (PPP) and tropospheric estimation that is global in scope. This enhancement shows a 37% improvement if the precision of the Galileo-only zenith tropospheric delay, while we may anticipate further benefits in terms of tropospheric gradients and slant delays in the future if an optimal multi-constellation and multi-frequency processing strategy is used. First, we analyze the performance of the multi-frequency troposphere estimates based on the PPP raw observation model by comparing it with the standard ionosphere-free model. The performance of the Galileo-only tropospheric solution is then validated with respect to GPS-only solution using 48 globally distributed Multi-GNSS Experiment (MGEX) stations. The averaged bias and standard deviations are −0.3 and 5.8 mm when only using GPS satellites, respectively, and 0.0 and 6.2 mm for Galileo, respectively, when compared to the International GNSS Service (IGS) final Zenith Troposphere Delay(ZTD) products. Using receiver antenna phase center corrections from the corresponding GPS dual-frequency observations does not affect the Galileo PPP ambiguity float troposphere solutions. These results demonstrate a comparable precision achieved for both Galileo-only and GPS-only ZTD solutions, however, horizontal tropospheric gradients, estimated from standalone GPS and Galileo solutions, still show larger discrepancies, mainly due to their being less Galileo satellites than GPS satellites. Including Galileo E1, E5a, E5b, and E5 signals, along with their proper observation weighting, show the benefit of multi-frequency observations, further improving the ZTD precision by 4% when compared to the dual-frequency raw observation model. Overall, the presented results demonstrate good prospects for the application of multi-frequency Galileo observations for the tropospheric parameter estimates.


2019 ◽  
Vol 72 (06) ◽  
pp. 1533-1549
Author(s):  
X.M. Huang ◽  
X. Zhao ◽  
J.Y. Li ◽  
X.W. Zhu ◽  
G. Ou

An algorithm for Global Navigation Satellite System satellite atomic clock integrity monitoring based on an extended measurement model is proposed. A detection statistic achieved by parity transformation is used to detect clock anomalies, and the concept of the optimal accumulation number, with a method to find it, is provided. Numerical simulations are adopted to verify the validity of detecting two typical anomalies.


2020 ◽  
Vol 12 (11) ◽  
pp. 1821
Author(s):  
Qingsong Ai ◽  
Yunbin Yuan ◽  
Baocheng Zhang ◽  
Tianhe Xu ◽  
Yongchang Chen

Because of the frequency division multiple access (FDMA) technique, Russian global navigation satellite system (GLONASS) observations suffer from pseudo-range inter-channel biases (ICBs), which adversely affect satellite clock offset estimation. In this study, the GLONASS pseudo-range ICB is treated in four different ways: as ignorable parameters (ICB-NONE), polynomial functions of frequency (ICB-FPOL), frequency-specific parameters (ICB-RF), and satellite-specific parameters (ICB-RS). Data from 110 international global navigation satellite system (GNSS) service stations were chosen to obtain the ICBs and were used for satellite clock offset estimation. The ICBs from the different schemes varied from −20 ns to 80 ns. The ICB-RS model yielded the best results, improving the clock offset accuracy from 300 ps to about 100 ps; it could improve the GLONASS precise point positioning (PPP) accuracy and the converging time by approximately 50% and 30%, respectively. Along similar lines, we introduced the GPS-ICB parameters in the process of GPS satellite clock estimation and GPS/GLONASS PPP, as ICBs may exist for GPS because of different chip shape distortions among GPS satellites. This possibility was found to be the case. Further, the GPS-ICB magnitude ranged from −2 ns to 2 ns, and the estimated satellite clock offsets could improve the accuracy of the GPS and combined GPS/GLONASS PPP by 10%; it also accelerated the converging time by more than 15% thanks to the GPS-ICB calibration.


Author(s):  
Y. Wu ◽  
J. Ren ◽  
W. Liu

As BeiDou navigation system has been operational since December 2012. There is an increasing desire to use multiple constellation to improve positioning performance. The signal-in-space (SIS) anomaly caused by the ground control and the space vehicle is one of the major threats to affect the integrity. For a young Global Navigation Satellite System, knowledge about SIS anomalies in history is very important for not only assessing the SIS integrity performance of a constellation but also providing the assumption for ARAIM (Advanced Receiver Autonomous Integrity Monitoring). <br><br> In this paper, the broadcast ephemerides and the precise ones are pre-processed for avoiding the false anomaly identification. The SIS errors over the period of Mar. 2013-Feb. 2016 are computed by comparing the broadcast ephemerides with the precise ones. The time offsets between GPST (GPS time) and BDT (BeiDou time) are estimated and removed by an improved estimation algorithm. SIS worst-UREs are computed and a RMS criteria are investigated to identify the SIS anomalies. The results show that the probability of BeiDou SIS anomalies is in 10-3 level in last three years. Even though BeiDou SIS integrity performance currently cannot match the GPS integrity performances, the result indicates that BeiDou has a tendency to improve its integrity performance.


Sign in / Sign up

Export Citation Format

Share Document