scholarly journals Optimal Fault Detection and Exclusion Applied in GNSS Positioning

2013 ◽  
Vol 66 (5) ◽  
pp. 683-700 ◽  
Author(s):  
Ling Yang ◽  
Nathan L. Knight ◽  
Yong Li ◽  
Chris Rizos

In Global Navigation Satellite System (GNSS) positioning, it is standard practice to apply the Fault Detection and Exclusion (FDE) procedure iteratively, in order to exclude all faulty measurements and then ensure reliable positioning results. Since it is often only necessary to consider a single fault in a Receiver Autonomous Integrity Monitoring (RAIM) procedure, it would be ideal if a fault could be correctly identified. Thus, fault detection does not need to be applied in an iterative sense. One way of evaluating whether fault detection needs to be reapplied is to determine the probability of a wrong exclusion. To date, however, limited progress has been made in evaluating such probabilities. In this paper the relationships between different parameters are analysed in terms of the probability of correct and incorrect identification. Using this knowledge, a practical strategy for incorporating the probability of a wrong exclusion into the FDE procedure is developed. The theoretical findings are then demonstrated using a GPS single point positioning example.

2017 ◽  
Vol 70 (5) ◽  
pp. 1041-1061 ◽  
Author(s):  
Peter F. Swaszek ◽  
Richard J. Hartnett ◽  
Kelly C. Seals

Code phase Global Navigation Satellite System (GNSS) positioning performance is often described by the Geometric or Position Dilution of Precision (GDOP or PDOP), functions of the number of satellites employed in the solution and their geometry. This paper develops lower bounds to both metrics solely as functions of the number of satellites, effectively removing the added complexity caused by their locations in the sky, to allow users to assess how well their receivers are performing with respect to the best possible performance. Such bounds will be useful as receivers sub-select from the plethora of satellites available with multiple GNSS constellations. The bounds are initially developed for one constellation assuming that the satellites are at or above the horizon. Satellite constellations that essentially achieve the bounds are discussed, again with value toward the problem of satellite selection. The bounds are then extended to a non-zero mask angle and to multiple constellations.


Author(s):  
Y. Wu ◽  
J. Ren ◽  
W. Liu

As BeiDou navigation system has been operational since December 2012. There is an increasing desire to use multiple constellation to improve positioning performance. The signal-in-space (SIS) anomaly caused by the ground control and the space vehicle is one of the major threats to affect the integrity. For a young Global Navigation Satellite System, knowledge about SIS anomalies in history is very important for not only assessing the SIS integrity performance of a constellation but also providing the assumption for ARAIM (Advanced Receiver Autonomous Integrity Monitoring). <br><br> In this paper, the broadcast ephemerides and the precise ones are pre-processed for avoiding the false anomaly identification. The SIS errors over the period of Mar. 2013-Feb. 2016 are computed by comparing the broadcast ephemerides with the precise ones. The time offsets between GPST (GPS time) and BDT (BeiDou time) are estimated and removed by an improved estimation algorithm. SIS worst-UREs are computed and a RMS criteria are investigated to identify the SIS anomalies. The results show that the probability of BeiDou SIS anomalies is in 10-3 level in last three years. Even though BeiDou SIS integrity performance currently cannot match the GPS integrity performances, the result indicates that BeiDou has a tendency to improve its integrity performance.


2019 ◽  
Vol 92 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Kamil Krasuski ◽  
Janusz Cwiklak ◽  
Marek Grzegorzewski

Purpose This paper aims to present the problem of the integration of the global positioning system (GPS)/global navigation satellite system (GLONASS) data for the processing of aircraft position determination. Design/methodology/approach The aircraft coordinates were obtained based on GPS and GLONASS code observations for the single point positioning (SPP) method. The numerical computations were executed in the aircraft positioning software (APS) package. The mathematical scheme of equation observation of the SPP method was solved using least square estimation in stochastic processing. In the research experiment, the raw global navigation satellite system data from the Topcon HiperPro onboard receiver were applied. Findings In the paper, the mean errors of an aircraft position from APS were under 3 m. In addition, the accuracy of aircraft positioning was better than 6 m. The integrity term for horizontal protection level and vertical protection level parameters in the flight test was below 16 m. Research limitations/implications The paper presents only the application of GPS/GLONASS observations in aviation, without satellite data from other navigation systems. Practical implications The presented research method can be used in an aircraft based augmentation system in Polish aviation. Social implications The paper is addressed to persons who work in aviation and air transport. Originality/value The paper presents the SPP method as a satellite technique for the recovery of an aircraft position in an aviation test.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4847
Author(s):  
Weichuan Pan ◽  
Xingqun Zhan ◽  
Xin Zhang ◽  
Shizhuang Wang

The advanced receiver autonomous integrity monitoring (advanced RAIM, ARAIM) is the next generation of RAIM which is widely used in civil aviation. However, the current ARAIM needs to evaluate hundreds of subsets, which results in huge computational loads. In this paper, a method using the subset excluding entire constellation to evaluate the single satellite fault subsets and the simultaneous multiple satellites fault subsets is presented. The proposed ARAIM algorithm is based on the tight integration of the global navigation satellite system (GNSS) and inertial navigation system (INS). The number of subsets that the proposed GNSS/INS ARAIM needs to consider is about 2% of that of the current ARAIM, which reduces the computational load dramatically. The detailed fault detection (FD) process and fault exclusion (FE) process of the proposed GNSS/INS ARAIM are provided. Meanwhile, the method to obtain the FD-only integrity bound and the after-exclusion integrity bound is also presented in this paper. The simulation results show that the proposed GNSS/INS ARAIM is able to find the failing satellite accurately and its integrity performance is able to meet the integrity requirements of CAT-I precision approach.


2021 ◽  
Vol 11 (11) ◽  
pp. 4787
Author(s):  
Massimiliano Pepe ◽  
Domenica Costantino ◽  
Gabriele Vozza ◽  
Vincenzo Saverio Alfio

The release of Android 7.0 has made raw GNSS positioning data available on smartphones and, as a result, this has allowed many experiments to be developed to evaluate the quality of GNSS positioning using mobile devices. This paper investigates the best positioning, using pseudorange measurement in the Differential Global Navigation Satellite System (DGNSS) and Single Point Positioning (SPP), obtained by smartphones. The experimental results show that SPP can be comparable to the DGNSS solution and can generally achieve an accuracy of one meter in planimetric positioning; in some conditions, an accuracy of less than one meter was achieved in the Easting coordinate. As far as altimetric positioning is concerned, it has been demonstrated that DGNSS is largely preferable to SPP. The aim of the research is to introduce a statistical method to evaluate the accuracy and precision of smartphone positioning that can be applied to any device since it is based only on the pseudoranges of the code. In order to improve the accuracy of positioning from mobile devices, two methods (Tukey and K-means) were used and applied, as they can detect and eliminate outliers in the data. Finally, the paper shows a case study on how the implementation of SPP on GIS applications for smartphones could improve citizen science experiments.


2019 ◽  
Vol 72 (5) ◽  
pp. 1331-1344
Author(s):  
Ahao Wang ◽  
Junping Chen ◽  
Yize Zhang ◽  
Jiexian Wang ◽  
Bin Wang

The new Global Positioning System (GPS) Civil Navigation Message (CNAV) has been transmitted by Block IIR-M and Block IIF satellites since April 2014, both on the L2C and L5 signals. Compared to the Legacy Navigation Message (LNAV), the CNAV message provides six additional parameters (two orbit parameters and four Inter-Signal Correction (ISC) parameters) for prospective civil users. Using the precise products of the International Global Navigation Satellite System Service (IGS), we evaluate the precision of satellite orbit, clock and ISCs of the CNAV. Additionally, the contribution of the six new parameters to GPS Single Point Positioning (SPP) is analysed using data from 22 selected Multi-Global Navigation Satellite System Experiment (MGEX) stations from a 30-day period. The results indicate that the CNAV/LNAV Signal-In-Space Range Error (SISRE) and orbit-only SISRE from January 2016 to March 2018 is of 0·5 m and 0·3 m respectively, which is improved in comparison with the results from an earlier period. The ISC precision of L1 Coarse/Acquisition (C/A) is better than 0·1 ns, and those of L2C and L5Q5 are about 0·4 ns. Remarkably, ISC correction has little effect on the single-frequency SPP for GPS users using civil signals (for example, L1C, L2C), whereas dual-frequency SPP with the consideration of ISCs results have an accuracy improvement of 18·6%, which is comparable with positioning accuracy based on an ionosphere-free combination of the L1P (Y) and L2P (Y) signals.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 91 ◽  
Author(s):  
Umberto Robustelli ◽  
Valerio Baiocchi ◽  
Giovanni Pugliano

On May 2018 the world’s first dual-frequency Global Navigation Satellite System (GNSS) smartphone produced by Xiaomi equipped with a Broadcom BCM47755 chip was launched. It is able to receive L1/E1/ and L5/E5 signals from GPS, Galileo, Beidou, and GLONASS (GLObal NAvigation Satellite System) satellites. The main aim of this work is to achieve the phone’s position by using multi-constellation, dual frequency pseudorange and carrier phase raw data collected from the smartphone. Furthermore, the availability of dual frequency raw data allows to assess the multipath performance of the device. The smartphone’s performance is compared with that of a geodetic receiver. The experiments were conducted in two different scenarios to test the smartphone under different multipath conditions. Smartphone measurements showed a lower C/N0 and higher multipath compared with those of the geodetic receiver. This produced negative effects on single-point positioning as showed by high root mean square error (RMS). The best positioning accuracy for single point was obtained with the E5 measurements with a DRMS (horizontal root mean square error) of 4.57 m. For E1/L1 frequency, the 2DRMS was 5.36 m. However, the Xiaomi Mi 8, thanks to the absence of the duty cycle, provided carrier phase measurements used for a static single frequency relative positioning with an achieved 2DRMS of 1.02 and 1.95 m in low and high multipath sites, respectively.


2009 ◽  
Vol 63 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Tomislav Radišić ◽  
Doris Novak ◽  
Tino Bucak

Receiver Autonomous Integrity Monitoring (RAIM) is a method, used by an aircraft's receiver, for detecting and isolating faulty satellites of the Global Navigation Satellite System (GNSS). In order for a receiver to be able to detect and isolate a faulty satellite using a RAIM algorithm, a couple of conditions must be met: a minimum number of satellites, and an adequate satellite geometry. Due to the highly predictable orbits of the GPS satellites, a RAIM availability prediction can be done easily. A number of RAIM methods exist; however, none of them takes into account the precise terrain masking of the satellites for the specific location. They consider a uniform fixed mask angle over the whole horizon. This paper will introduce the variable mask RAIM algorithm in order to show to what extent the terrain can affect the RAIM availability and how much it differs from the conventional algorithms.


Sign in / Sign up

Export Citation Format

Share Document