scholarly journals Dynamic Ship Domain Models for Capacity Analysis of Restricted Water Channels

2015 ◽  
Vol 69 (3) ◽  
pp. 481-503 ◽  
Author(s):  
Jingxian Liu ◽  
Feng Zhou ◽  
Zongzhi Li ◽  
Maoqing Wang ◽  
Ryan Wen Liu

Developing adequate ship domain models may significantly benefit vessel navigation safety. In essence, navigation safety is collectively affected by the navigable waterway condition, the size and shape of the ship, and operators' skills. The existing ship domains mainly use constant values for the model input parameters, making them incapable of handling site-specific conditions. This study proposes dynamic ship domain models that take into consideration navigable waterway conditions, ship behaviours, ship types and sizes, and operators' skills in a holistic manner. Specifically, the conditions of restricted waterways are classified into navigating along the channel, crossing the channel, joining another flow and turning. The ship types considered include ships that transport non-hazardous goods and Liquid Natural Gas (LNG) ships that are in need of additional security zones. A computational experiment is conducted for model application using data on water channel design and ship traffic volumes related to navigating along the channel, joining another flow and turning. Comparisons of results obtained between the proposed dynamic models with real ship traffic counts reveal that the proposed models could achieve a higher level of accuracy in estimating the capacity of restricted water channels. It therefore could potentially deliver safety enhancements of waterway transportation.

Author(s):  
Yankang He ◽  
Di Zhang ◽  
Jinfen Zhang ◽  
Bing Wu ◽  
Carlos Guedes Soares

Abstract The existing ship domain models are mostly based on the navigation behavior of open water vessels, and they are not practicable to directly apply to inland rivers. Therefore, it is necessary to establish an inland ship safety domain model based on the ship traffic characteristic therein. Based on the AIS data in the Yangtze River, this paper establishes the functional relationship between these data through multiple regression analysis using data such as ship spacing, ship length, ship speed, and heading angle. Based on this, the safety distance between ships of different lengths in different situations and other ships is determined, so as to establish a dynamic ship domain model. At the same time, this paper explores the geographical relationship between ship and channel boundary and incorporates it into the ship domain model. Finally, a quantitative approach for ship collision risk is proposed, and the collision threat degree is calculated according to the relative heading of the ship and the position in the dynamic ship domain model. Two case studies, including crossing and overtaking situations, are performed to validate the proposed model.


1987 ◽  
Vol 33 (114) ◽  
pp. 239-242
Author(s):  
M. E. R. Walford

AbstractWe discuss the suggestion that small underwater transmitters might be used to illuminate the interior of major englacial water channels with radio waves. Once launched, the radio waves would naturally tend to be guided along the channels until attenuated by absorption and by radiative loss. Receivers placed within the channels or at the glacier surface could be used to detect the signals. They would provide valuable information about the connectivity of the water system. The electrical conductivity of the water is of crucial importance. A surface stream on Storglaciären, in Sweden, was found, using a low-frequency technique, to have a conductivity of approximately 4 × 10−4 S m−1. Although this is several hundred times higher than the conductivity of the surrounding glacier ice, the contrast is not sufficient to permit us simply to use electrical conductivity measurements to establish the connectivity of englacial water channels. However, the water conductivity is sufficiently small that, under favourable circumstances, radio signals should be detectable after travelling as much as a few hundred metres along an englacial water channel. In a preliminary field experiment, we demonstrated semi quantitatively that radio waves do indeed propagate as expected, at least in surface streams. We conclude that under-water radio transmitters could be of real practical value in the study of the englacial water system, provided that sufficiently robust devices can be constructed. In a subglacial channel, however, we expect the radio range would be much smaller, the environment much harsher, and the technique of less practical value.


1996 ◽  
Vol 270 (1) ◽  
pp. C12-C30 ◽  
Author(s):  
A. S. Verkman ◽  
A. N. van Hoek ◽  
T. Ma ◽  
A. Frigeri ◽  
W. R. Skach ◽  
...  

This review summarizes recent progress in water-transporting mechanisms across cell membranes. Modern biophysical concepts of water transport and new measurement strategies are evaluated. A family of water-transporting proteins (water channels, aquaporins) has been identified, consisting of small hydrophobic proteins expressed widely in epithelial and nonepithelial tissues. The functional properties, genetics, and cellular distributions of these proteins are summarized. The majority of molecular-level information about water-transporting mechanisms comes from studies on CHIP28, a 28-kDa glycoprotein that forms tetramers in membranes; each monomer contains six putative helical domains surrounding a central aqueous pathway and functions independently as a water-selective channel. Only mutations in the vasopressin-sensitive water channel have been shown to cause human disease (non-X-linked congenital nephrogenic diabetes insipidus); the physiological significance of other water channels remains unproven. One mercurial-insensitive water channel has been identified, which has the unique feature of multiple overlapping transcriptional units. Systems for expression of water channel proteins are described, including Xenopus oocytes, mammalian and insect cells, and bacteria. Further work should be directed at elucidation of the role of water channels in normal physiology and disease, molecular analysis of regulatory mechanisms, and water channel structure determination at atomic resolution.


1996 ◽  
Vol 270 (5) ◽  
pp. F880-F885 ◽  
Author(s):  
P. Ford ◽  
G. Amodeo ◽  
C. Capurro ◽  
C. Ibarra ◽  
R. Dorr ◽  
...  

The ovarian oocytes from Bufo arenarum (BAO) but not those from Xenopus laevis (XLO) would have water channels (WC). We now report that the injection of the mRNA from BAO into the oocytes from XLO increased their water osmotic permeability (Pi) (reduced by 0.3 mM HgCl2 and reversed by 5 mM beta-mercaptoethanol). A 30-min challenge with progesterone induced, 18 h later, a reduction of the mercury-sensitive fraction of Pf in the BAO (but not in XLO). The mRNA from BAO pretreated with progesterone lost its capacity to induce WC in the XLO, but the hormone did not affect the expression of the WC in XLO previously injected with the mRNA from BAO. Pf was also measured in urinary bladders of BAO. Eighteen hours after a challenge with progesterone, a reduction in the hydrosmotic response to oxytocin was observed. Finally, the mRNA from the urinary bladder of BAO was injected into XLO. An increase in Pf was observed. This was not the case if, before the mRNA extraction, the bladders were treated with progesterone. We conclude that the BAO WC share progesterone sensitivity with the oxytocin-regulated water channel present in the toad urinary bladder.


2007 ◽  
Vol 18-19 ◽  
pp. 563-568
Author(s):  
O.E. Ekenta ◽  
B.U. Anyata

This work focuses on the conception and formulation of appropriate filtration models for use by water treatment professionals for design, development and management of deep-bed (depth) filters. Performance and optimization studies were carried out using data (turbidity, filtration rate, head loss) acquired from pilot filter test runs. The curves developed from these studies were utilized for the formulation of steady-state and hydro-dynamic models of depth filtration. An effluent quality model was developed, relating depth of flow in filter bed with effluent turbidity. This model was verified and validated. The depths obtained are in good agreement with standard values from literature.


2018 ◽  
Vol 48 (1) ◽  
pp. 57-82 ◽  
Author(s):  
Woochul Song ◽  
Chao Lang ◽  
Yue-xiao Shen ◽  
Manish Kumar

Aquaporins (AQPs) are naturally occurring water channel proteins. They can facilitate water molecule translocation across cellular membranes with exceptional selectivity and high permeability that are unmatched in synthetic membrane systems. These unique properties of AQPs have led to their use as functional elements in membranes in recent years. However, the intricate nature of AQPs and concerns regarding their stability and processability have encouraged researchers to develop synthetic channels that mimic the structure and properties of AQPs and other biological water-conducting channels. These channels have been termed artificial water channels. This article reviews current progress and provides a historical perspective as well as an outlook toward developing scalable membranes based on artificial water channels.


2020 ◽  
pp. 001946622095310
Author(s):  
Rajesh Gupta ◽  
Ekaterina Kozyreva ◽  
Pavel Chistyakov ◽  
Petr Lavrinenko ◽  
Igor Smirnov

How much coal will India need to transport in future and is the rail network poised to handle that requirement are two important questions for the emerging economy. To find answers to these questions, this study creates a distribution model of coal freight traffic on Indian Railways, analyzing the sufficiency of infrastructure for future economic needs. Using data on spatial distribution of coal mines, coal traffic volumes and rail sectional capacities, this study creates sectional capacity maps as main visual tool for analysis. Sections with bottlenecks are identified for next ten years’ coal transport need of the country. The simulation done in this study finds 15% under-delivery for the 900mT coal demand in the country by 2030 due to transport bottlenecks. Based on this analysis, the article presents the conclusions on possible influence of existing conditions of coal transportation on India’s economy in the long-term period and also considers the role of dedicated freight.


2019 ◽  
Vol 21 (41) ◽  
pp. 22711-22721 ◽  
Author(s):  
Yong Liu ◽  
Harish Vashisth

Peptide appended pillar[5]arene (PAP) is an artificial water channel resembling biological water channel proteins, which has shown a significant potential for designing bioinspired water purification systems.


2020 ◽  
Vol 8 (4) ◽  
pp. 264
Author(s):  
Jian Zhou ◽  
Chenxu Wang ◽  
Anmin Zhang

Unmanned Surface Vehicles (USVs) are intelligent machines that have been widely studied in recent years. The safety of USVs’ activities is a priority issue in their applications; one effective method is to delimit an exclusive safety domain around the USV. Besides considering collision avoidance, the safety domain should satisfy the requirements of encounter situations in the COLREGs (International Regulations for Preventing Collisions at Sea) as well. Whereas the model providing the safety domain for the USVs is defined through the experience of the manned ships, a specific model for USVs has been rarely studied. A dynamic navigation safety domain (DNSD) for USVs was proposed in this paper. To construct the model, the essential factors that could affect the navigation safety of the USVs were extracted via a rough set, and the extension functions of these factors were carried out. The DNSD was employed in various situations and compared with the ship domain models of common ships. It was found that the domain boundary can be automatically corrected according to the change in the working conditions when the DNSD is in use. Compared with the Fujii and Coldwell models, the DNSD can provide a larger safety area for a USV’s action of collision avoidance.


1991 ◽  
Vol 261 (1) ◽  
pp. C143-C153 ◽  
Author(s):  
H. W. Harris ◽  
M. L. Zeidel ◽  
C. Hosselet

Antidiuretic hormone (ADH) stimulation of toad bladder granular cells rapidly increases the osmotic water permeability (Pf) of their apical membranes by insertion of highly selective water channels. Before ADH stimulation, these water channels are stored in large cytoplasmic vesicles called aggrephores. ADH causes aggrephores to fuse with the apical membrane. Termination of ADH stimulation results in prompt endocytosis of water channel-containing membranes via retrieval of these specialized regions of apical membrane. Protein components of the ADH water channel contained within these retrieved vesicles would be expected to be integral membrane protein(s) that span the vesicle's lipid bilayer to create narrow aqueous channels. Our previous work has identified proteins of 55 (actually a 55/53-kDa doublet), 17, 15, and 7 kDa as candidate ADH water channel components. We now have investigated these candidate ADH water channel proteins in purified retrieved vesicles. These vesicles do not contain a functional proton pump as assayed by Western blots of purified vesicle protein probed with anti-H(+)-ATPase antisera. Approximately 60% of vesicle protein is accounted for by three protein bands of 55, 53, and 46 kDa. Smaller contributions to vesicle protein are made by the 17- and 15-kDa proteins. Triton X-114-partitioning analysis shows that the 55, 53, 46, and 17 kDa are integral membrane proteins. Vectorial labeling analysis with two membrane-impermeant reagents shows that the 55-, 53-, and 46-kDa protein species span the lipid bilayer of these vesicles. Thus the 55-, 53-, and 46-kDa proteins possess characteristics expected for ADH water channel components. These data show that the 55- and 53- and perhaps the 46-, 17-, and 15-kDa proteins are likely components of aqueous transmembrane pores that constitute ADH water channels contained within these vesicles.


Sign in / Sign up

Export Citation Format

Share Document