Dynamic Ship Domain Model Based on AIS Data for Inland Waterways

Author(s):  
Yankang He ◽  
Di Zhang ◽  
Jinfen Zhang ◽  
Bing Wu ◽  
Carlos Guedes Soares

Abstract The existing ship domain models are mostly based on the navigation behavior of open water vessels, and they are not practicable to directly apply to inland rivers. Therefore, it is necessary to establish an inland ship safety domain model based on the ship traffic characteristic therein. Based on the AIS data in the Yangtze River, this paper establishes the functional relationship between these data through multiple regression analysis using data such as ship spacing, ship length, ship speed, and heading angle. Based on this, the safety distance between ships of different lengths in different situations and other ships is determined, so as to establish a dynamic ship domain model. At the same time, this paper explores the geographical relationship between ship and channel boundary and incorporates it into the ship domain model. Finally, a quantitative approach for ship collision risk is proposed, and the collision threat degree is calculated according to the relative heading of the ship and the position in the dynamic ship domain model. Two case studies, including crossing and overtaking situations, are performed to validate the proposed model.

Author(s):  
D. Kruse ◽  
C. Schweers ◽  
A. Trächtler

The paper presents a methodology for a partly automated parameter identification that is to validate multi-domain models. To this end an identification tool under MATLAB has been developed. It enables a partly automated procedure that uses established methods to identify parameters from complex, nonlinear multi-domain models. In order to integrate such multi-domain models into the tool, an interface based on the Functional Mock-up Interface (FMI) standard can be used. The interface makes the required identification parameters from the multi-domain model automatically available to the identification tool. Additionally a guideline is developed which describes the way in which the respective domain expert has to mark the required identification parameters during modeling. The needs for this methodology as well as its application are shown by a practical example from the industry, using Dymola, the FMI-standard, and MATLAB. The practical example deals with the model-based development of a new washing procedure. The paper presents a partly automated parameter identification for the validation of the absorption part of the multi-domain model. Besides, new approaches to the modelling of this kind of absorption effects will be detailed.


2013 ◽  
Vol 353-356 ◽  
pp. 3438-3443
Author(s):  
Li Long Liu ◽  
Liang Ke Huang ◽  
Teng Xu Zhang ◽  
Miao Zhou ◽  
Chao Long Yao

In this paper, the relationship between zenith tropospheric delays and the altitude of stations is analyzed using the EGNOS tropospheric correction model. The new model (EHT model) is proposed for estimating zenith tropospheric delays from regional CORS data without meteorological data. The proposed model is compared with the direct interpolation method and the remove-restore method using data from Guangxi CORS. The results show that the new models significantly improve the calculated precision.


2015 ◽  
Vol 69 (3) ◽  
pp. 481-503 ◽  
Author(s):  
Jingxian Liu ◽  
Feng Zhou ◽  
Zongzhi Li ◽  
Maoqing Wang ◽  
Ryan Wen Liu

Developing adequate ship domain models may significantly benefit vessel navigation safety. In essence, navigation safety is collectively affected by the navigable waterway condition, the size and shape of the ship, and operators' skills. The existing ship domains mainly use constant values for the model input parameters, making them incapable of handling site-specific conditions. This study proposes dynamic ship domain models that take into consideration navigable waterway conditions, ship behaviours, ship types and sizes, and operators' skills in a holistic manner. Specifically, the conditions of restricted waterways are classified into navigating along the channel, crossing the channel, joining another flow and turning. The ship types considered include ships that transport non-hazardous goods and Liquid Natural Gas (LNG) ships that are in need of additional security zones. A computational experiment is conducted for model application using data on water channel design and ship traffic volumes related to navigating along the channel, joining another flow and turning. Comparisons of results obtained between the proposed dynamic models with real ship traffic counts reveal that the proposed models could achieve a higher level of accuracy in estimating the capacity of restricted water channels. It therefore could potentially deliver safety enhancements of waterway transportation.


2021 ◽  
Author(s):  
He Yankang ◽  
Di Zhang ◽  
Zhang Jinfen ◽  
Carlos Guedes Soares ◽  
Bing Wu

2021 ◽  
Author(s):  
He Yankang ◽  
Di Zhang ◽  
Zhang Jinfen ◽  
Carlos Guedes Soares ◽  
Bing Wu

Author(s):  
Jun Hao Alvin Ng ◽  
Ronald P. A. Petrick

The soundness and optimality of a plan depends on the correctness of the domain model. Specifying complete domain models can be difficult when interactions between an agent and its environment are complex. We propose a model-based reinforcement learning (MBRL) approach to solve planning problems with unknown models. The model is learned incrementally over episodes using only experiences from the current episode which suits non-stationary environments. We introduce the novel concept of reliability as an intrinsic motivation for MBRL, and a method to learn from failure to prevent repeated instances of similar failures. Our motivation is to improve the learning efficiency and goal-directedness of MBRL. We evaluate our work with experimental results for three planning domains.


2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.


2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


Sign in / Sign up

Export Citation Format

Share Document