Ocean Vehicle Inertial Navigation Method based on Dynamic Constraints

2018 ◽  
Vol 71 (6) ◽  
pp. 1553-1566
Author(s):  
Jiazhen Lu ◽  
Lili Xie

This paper proposes a dynamic aided inertial navigation method to improve the attitude accuracy for ocean vehicles. The proposed method includes a dynamic identification algorithm and the utilisation of dynamic constraints to derive additional observations. The derived additional observations are used to update the filters and limit the attitude error based on the dynamic knowledge. In this paper, two dynamic conditions, constant speed cruise and quasi-static, are identified and corresponding additional velocity and position observations are derived. Simulation and experimental results show that the proposed method can improve and guarantee the accuracy of the attitude. The method can be used as a backup method to bridge external information outages or unavailability. Both the features of independence of external support and integrity of the Inertial Navigation System (INS) are enhanced.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 829
Author(s):  
Duanyang Gao ◽  
Baiqing Hu ◽  
Lubin Chang ◽  
Fangjun Qin ◽  
Xu Lyu

The gravity gradient is the second derivative of gravity potential. A gravity gradiometer can measure the small change of gravity at two points, which contains more abundant navigation and positioning information than gravity. In order to solve the problem of passive autonomous, long-voyage, and high-precision navigation and positioning of submarines, an aided navigation method based on strapdown gravity gradiometer is proposed. The unscented Kalman filter framework is used to realize the fusion of inertial navigation and gravity gradient information. The performance of aided navigation is analyzed and evaluated from six aspects: long voyage, measurement update period, measurement noise, database noise, initial error, and inertial navigation system device level. When the parameters are set according to the benchmark parameters and after about 10 h of simulation, the results show that the attitude error, velocity error, and position error of the gravity gradiometer aided navigation system are less than 1 arcmin, 0.1 m/s, and 33 m, respectively.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3083
Author(s):  
Donghui Lyu ◽  
Jiongqi Wang ◽  
Zhangming He ◽  
Yuyun Chen ◽  
Bowen Hou

As a new information provider of autonomous navigation, the on-orbit landmark observation offers a new means to improve the accuracy of autonomous positioning and attitude determination. A novel autonomous navigation method based on the landmark observation and the inertial system is designed to achieve the high-accuracy estimation of the missile platform state. In the proposed method, the navigation scheme is constructed first. The implicit observation equation about the deviation of the inertial system output is derived and the Kalman filter is applied to estimate the missile platform state. Moreover, the physical observability of the landmark and the mathematical observability of the navigation system are analyzed. Finally, advantages of the proposed autonomous navigation method are demonstrated through simulations compared with the traditional celestial-inertial navigation system and the deeply integrated celestial-inertial navigation system.


2016 ◽  
Vol 55 (4) ◽  
pp. 044102 ◽  
Author(s):  
Xiaoyue Zhang ◽  
Haitao Shi ◽  
Jianye Pan ◽  
Chunxi Zhang

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yang Bo ◽  
Yang Xiaogang ◽  
Qu Geping ◽  
Wang Yongjun

A method of accurate integrated navigation for high-altitude aerocraft by medium precision strapdown inertial navigation system (SINS), star sensor, and global navigation satellite system (GNSS) is researched in this paper. The system error sources of SINS and star sensor are analyzed and modeled, and then system errors of SINS and star sensor are chosen as system states of integrated navigation. Considering that the output of star sensor is attitude quaternion, it can be regarded as an attitude matrix, then the equivalent attitude matrix is constructed by using the output of SINS, and the calculating equation of the equivalent attitude matrix is designed. Thus, one of the measurements of integrated navigation can be constructed by using the equivalent attitude matrix and the attitude matrix output of star sensor. According to the constraint conditions of the attitude matrix, the diagonal elements are selected as one of the measurements of integrated navigation, and the corresponding measurement equation is derived. At the same time, the velocity output and position output difference between SINS and GNSS is selected as the other measurement, and the corresponding measurement equation is also derived. On this basis, the Kalman filter is used to design an integrated navigation filtering algorithm. Simulation results show that although the medium precision SINS is used, the heading accuracy of this integrated navigation method is better than ±1.5′, the pitch and roll accuracy are better than ±0.9’, the velocity accuracy is better than ±0.05 m/s, and the position accuracy is better than ±3.8 m. Therefore, the integrated navigation effect is very significant.


Micromachines ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 24 ◽  
Author(s):  
Yun Xu ◽  
Tong Zhou

In order to guarantee the stable flight of a guided projectile, it is difficult to realize in-flight alignment for the micro inertial navigation system (MINS) during its short flight time. In this paper, a method based on changing acceleration using exponential function is proposed. First, double-vector observations were derived. Then the initial attitude for the guided projectiles was estimated by the regressive quaternion estimation (QUEST) algorithm. Further, the estimated errors were analyzed, and the reason for using the changing acceleration for the in-flight alignment was explained. A simulation and semi-physical experiment was performed to show the effectiveness of the proposed method. The results showed that the initial attitude error for the rolling angle was about 0.35°, the pitch angle was about 0.1° and the heading angle was about 0.6°, in which the initial shooting angle was between 15° and 55°. In future studies, the field experiments will be carried out to test the stability of the proposed in-flight alignment for guided projectiles.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2911 ◽  
Author(s):  
Ling Zhang ◽  
Yuchen Cui ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Jizhou Lai ◽  
...  

In order to obtain accurate and optimized navigation sensor information, it is necessary to study information fusion and fault diagnosis with high reliability, high precision and high autonomy, and then to propose a rapid and accurate intelligent decision-making scheme based on multi-source and heterogeneous navigation information. In view of the existing fault-tolerant navigation federated filter structure, the method of assuming the reference system (inertial navigation system) to be fault-free and then diagnosing the measuring sensor fault is generally adopted. Considering that the structure of the filter can’t detect and isolate the faults of the inertial navigation system, the performance of the MEMS inertial navigation system declines due to complex environments resulting from vibrations and temperature changes; additionally, external interference may lead to the direct failure of the MEMS inertial device. Therefore, this paper studies a fault-tolerant navigation method based on a no-reference system. For the sensor sub-system of a custom micro air vehicle (MAV), a fault detection method based on a reference-free system is proposed. Based on the fault type analysis, some improvements have been made to the existing residual chi-square detection method, and an interactive residual fault detection method with distributed states is proposed. On this basis, aiming at the characteristics of a reference-free system, the weight distribution scheme of the reference system and the tested systems are studied, and a self-regulation filter fusion and fault detection method based on reference-free system is designed.


2011 ◽  
Vol 308-310 ◽  
pp. 662-667
Author(s):  
Hon Gjin Zhou ◽  
Xiu Sen Wang ◽  
Cheng Tao Yi

Gyro-Free Inertial Navigation System(GFINS) is constructed mainly with accelerometers. A nine-accelerometer GFINS scheme is designed and the prototype is manufactured. Then quaternion based attitude resolution algorithm is developed, the algorithm is also applied to the GFINS prototype, the results show that the algorithm can effectively offspring the cone-effect, and the attitude is resolute validly, the maximum attitude error is up to 0.37°, the maximum azimuth error is 0.47°.


Sign in / Sign up

Export Citation Format

Share Document