A SYSTEM FOR PROTECTING AN OIL DIFFUSION PUMP AGAINST FAILURE OF THE MECHANICAL FORE PUMP, COOLING WATER, OR ELECTRICITY

Author(s):  
W. C. Bigelow ◽  
F. B. Drogosz ◽  
S. Nitschke

High vacuum systems with oil diffusion pumps usually have a pressure switch to protect against Insufficient cooling water; however, If left unattended for long periods of time, failure of the mechanical fore pump can occur with equally serious results. The device shown schematically in Fig. 1 has been found to give effective protection against both these failures, yet it is inexpensive and relatively simple to build and operate.With this system, pressure in the fore pump line is measured by thermocouple vacuum gage TVG (CVC G.TC-004) whose output is monitored by meter relay MRy (Weston 1092 Sensitrol) which is set to close if the pressure rises above about 0.2 torr. This energizes control relay CRy (Potter & Brumfield KA5Y 120VAC SPDT) cutting off power to solenoid-operated fore line valve Vf (Cenco 94280-4 Norm. Closed) which closes to prevent further leakage of air into the diffusion pump

Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
Earl R. Walter ◽  
Glen H. Bryant

With the development of soft, film forming latexes for use in paints and other coatings applications, it became desirable to develop new methods of sample preparation for latex particle size distribution studies with the electron microscope. Conventional latex sample preparation techniques were inadequate due to the pronounced tendency of these new soft latex particles to distort, flatten and fuse on the substrate when they dried. In order to avoid these complications and obtain electron micrographs of undistorted latex particles of soft resins, a freeze-dry, cold shadowing technique was developed. The method has now been used in our laboratory on a routine basis for several years.The cold shadowing is done in a specially constructed vacuum system, having a conventional mechanical fore pump and oil diffusion pump supplying vacuum. The system incorporates bellows type high vacuum valves to permit a prepump cycle and opening of the shadowing chamber without shutting down the oil diffusion pump. A baffeled sorption trap isolates the shadowing chamber from the pumps.


Vacuum ◽  
1987 ◽  
Vol 37 (3-4) ◽  
pp. 335-338 ◽  
Author(s):  
F.M. Mao ◽  
J.M. Yang ◽  
W.E. Austin ◽  
J.H. Heck

Sign in / Sign up

Export Citation Format

Share Document