mRNA localization by Electron microscopic in situ hybridization

Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.

1994 ◽  
Vol 126 (4) ◽  
pp. 901-910 ◽  
Author(s):  
T J Deerinck ◽  
M E Martone ◽  
V Lev-Ram ◽  
D P Green ◽  
R Y Tsien ◽  
...  

A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate.


1998 ◽  
Vol 4 (S2) ◽  
pp. 440-441
Author(s):  
Maryann E. Martone ◽  
Andrea Thor ◽  
Stephen J. Young ◽  
Mark H. Ellisman.

Light microscopic imaging has experienced a renaissance in the past decade or so, as new techniques for high resolution 3D light microscopy have become readily available. Light microscopic (LM) analysis of cellular details is desirable in many cases because of the flexibility of staining protocols, the ease of specimen preparation and the relatively large sample size that can be obtained compared to electron microscopic (EM) analysis. Despite these advantages, many light microscopic investigations require additional analysis at the electron microscopic level to resolve fine structural features.High voltage electron microscopy allows the use of relatively thick sections compared to conventional EM and provides the basis for excellent new methods to bridge the gap between microanatomical details revealed by LM and EM methods. When combined with electron tomography, investigators can derive accurate 3D data from these thicker specimens. Through the use of correlated light and electron microscopy, 3D reconstructions of large cellular or subcellular structures can be obtained with the confocal microscope,


Author(s):  
Benjamin M. Siegel

The potential advantages of high voltage electron microscopy for extending the limits of resolution and contrast in imaging low contrast objects, such as biomolecular specimens, is very great. The results of computations will be presented showing that at accelerating voltages of 500-1000 kV it should be possible to achieve spacial resolutions of 1 to 1.5 Å and using phase contrast imaging achieve adequate image contrast to observe single atoms of low atomic number.The practical problems associated with the design and utilization of the high voltage instrument are, optimistically, within the range of competence of the state of the art. However, there are some extremely important and critical areas to be systematically investigated before we have achieved this competence. The basic electron optics of the column required is well understood, but before the full potential of an instrument capable of resolutions of better than 1.5 Å are realized some very careful development work will be required. Of great importance for the actual achievement of high resolution with a high voltage electron microscope is the fundamental limitation set by the characteristics of the high voltage electron beam that can be obtained from the accelerator column.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Sign in / Sign up

Export Citation Format

Share Document