Electron diffraction contrast of fluxons

Author(s):  
L.C. Qin ◽  
L.D. Marks

Partial penetration of an applied external magnetic field occurs in type-II superconductors. The properties of magnetic fluxons are important in determining the critical current density of type-II superconductors as it is the mobility of the fluxon lattice that limits the high value of critical current density of superconductors. There have been various experimental techniques in use to study the fluxons, e.g. the decoration technique, neutron diffraction, electron holography and scanning tunneling microscopy.Noting that in the thin crystal case the magnetic fluxes have a tangential component which deflects incident electrons, we explore the possibility of using conventional electron diffraction contrast technique to observe the fluxons. This is accomplished by using the London model for the vortex in thin crystals and the classical electromagnetic theory based on Maxwell equations to construct the magnetic field of a fluxon.

2011 ◽  
Vol 25 (04) ◽  
pp. 609-618
Author(s):  
MING JU CHOU ◽  
HERNG ER HORNG

The effects of quantum and thermal fluctuations on collective pinning and critical current density Jc are investigated for bulk type-II superconductors by utilizing quantum statistics. It is shown that for a constant magnetic field, Jc is nearly independent of temperature in the quantum limit; however, in the classical limit, Jc decreases weakly with increasing temperature when T < Tdp (depinning temperature); when Tdp < T < Tf (boundary fluctuation temperature), Jc is power-law-decaying, and when T > Tf, Jc decays exponentially. For constant temperature, Jc first decreases, then increases after reaching a maximum, and finally decreases again. These results are in agreement with the experiments.


2000 ◽  
Vol 14 (25n27) ◽  
pp. 3159-3164
Author(s):  
C. FERDEGHINI ◽  
M. R. CIMBERLE ◽  
G. GRASSO ◽  
P. GUASCONI ◽  
A. MALAGOLI ◽  
...  

We have developed a method that allows, by a simple set of magnetic measurements, to study the texturing of the grains inside a BSCCO-Ag tape. Because the texture is anisotropic we define the angle ϑ L that identifies the mean grain misalignment angle with respect to the tape surface in longitudinal direction (i.e. rolling direction) and the angle ϑ T in transverse direction. The technique is based on the assumption that, because of the very high anisotropy of the critical current density in BSCCO superconducting compounds, the magnetic moment is essentially generated by the current circulating in the a-b planes of the BSCCO grains. The different magnetisation cycles, measured when the orientation of the magnetic field with respect to the tape surface is changed, depend only on the grain orientation inside the tape, which determines the effective magnetic field component normal to the a-b planes of the grains. Here we present the texture evolution of the BSCCO grains inside silver sheated multifilamentary tape starting from the initial steps of the mechanical deformation up to the final heating stage. The results obtained from the magnetic method are compared with those obtained with other methods, i.e. X-ray diffraction and critical current density anisotropy. Also results obtained on samples prepared in different way will be presented.


1992 ◽  
Vol 170 (2) ◽  
pp. 549-562 ◽  
Author(s):  
D. Glatzer ◽  
A. Forkl ◽  
H. Theuss ◽  
H. U. Habermeier ◽  
H. Kronmüller

1991 ◽  
Author(s):  
G. Swaminathan ◽  
S. Rajendra Kumar ◽  
N. Ramadas ◽  
K. Venugopal ◽  
K. A. Durga Prasad ◽  
...  

2000 ◽  
Vol 39 (Part 1, No. 10) ◽  
pp. 5822-5827 ◽  
Author(s):  
Akihiro Oka ◽  
Satoshi Koyama ◽  
Teruo Izumi ◽  
Yuh Shiohara ◽  
Junko Shibata ◽  
...  

2012 ◽  
Vol 1434 ◽  
Author(s):  
Kohei Higashikawa ◽  
Kei Shiohara ◽  
Masayoshi Inoue ◽  
Takanobu Kiss ◽  
Masateru Yoshizumi ◽  
...  

ABSTRACTTo enhance a global critical current in a superconductor, it is indispensable to understand current limiting factors and their influence on such a critical current. From this point of view, we have investigated in-plane distribution of local critical current density and its electric field criterion in a thin-film superconductor by using scanning-Hall probe microscopy. In a remanent state, after the application of sufficiently high magnetic field to a sample, current flows at critical current density according to the critical state model. Such distribution of current density was estimated from that of measured magnetic field using the Biot-Savart law. Furthermore, the corresponding electric field criterion was evaluated from the relaxation of such remanent magnetic field by considering Faraday’s law. This means that we could estimate in-plane distribution of local critical current density as a function of electric field criterion in a nondestructive manner. This characterization method would be very helpful for finding current limiting factors in a thin-film superconductor and their influence on its global current density versus electric field properties which would usually be obtained by four-probe method.


Sign in / Sign up

Export Citation Format

Share Document