Observations of Pt-Ir on Al2O3 Catalysts Using a Fast Digital System Controlled STEM

Author(s):  
J. H. Butler

The familiar Scanning Transmission Electron Microscope (STEM) technique of Z-contrast, used to image heavy atoms on amorphous supports, can be applied to the study of metal catalysts with only partial success. The contrast is reduced when crystalline systems are studied since a Bragg contribution is introduced in the standard annular dark-field collector. At large angles, the Bragg reflections diminish due to thermal vibrations; and the scattering cross section is approximately proportional to Z2. Thus scattering in this region is predominately Rutherford-like. The atomic number dependence of this high angle detectoro (HAD) signal makes it particularly suited for identifying small (20-50Å diameter) catalyst particles suspended in polycrystal line alumina.The experimental configuration for this imaging mode suggests concurrent acquisition of the HAD signal and the corresponding bright field signal , as on-line arithmetic of the two is necessary to optimize image contrast. In the conventional STEM it is impossible to detect the HAD signal because it is cut off by the specimen cartridge. Treacy, et al. have developed a sophisticated method for obtaining these signals.

1999 ◽  
Vol 589 ◽  
Author(s):  
Y Kotaka ◽  
T. Yamazaki ◽  
Y Kikuchi ◽  
K. Watanabe

AbstractThe high-angle annular dark-field (HAADF) technique in a dedicated scanning transmission electron microscope (STEM) provides strong compositional sensitivity dependent on atomic number (Z-contrast image). Furthermore, a high spatial resolution image is comparable to that of conventional coherent imaging (HRTEM). However, it is difficult to obtain a clear atomic structure HAADF image using a hybrid TEM/STEM. In this work, HAADF images were obtained with a JEOL JEM-2010F (with a thermal-Schottky field-emission) gun in probe-forming mode at 200 kV. We performed experiments using Si and GaAs in the [110] orientation. The electron-optical conditions were optimized. As a result, the dumbbell structure was observed in an image of [110] Si. Intensity profiles for GaAs along [001] showed differences for the two atomic sites. The experimental images were analyzed and compared with the calculated atomic positions and intensities obtained from Bethe's eigen-value method, which was modified to simulate HAADF-STEM based on Allen and Rossouw's method for convergent-beam electron diffraction (CBED). The experimental results showed a good agreement with the simulation results.


Author(s):  
E. J. Kirkland ◽  
R. F. Loane ◽  
J. Silcox

The multislice method (e.g. Goodman and Moodie) of simulating bright field conventional transmission electron microscope (BF-CTEM) images of crystalline specimens can be extended to simulation of scanning transmission electron microscope (STEM) images of similar specimens in the annular dark field (ADF) mode. According to the reciprocity theorem (Pogany and Turner and Cowley) BF-CTEM would be equivalent to BF STEM with a point detector. Such a detector (STEM) however would yield an exceedingly small signal to noise ratio. Thus, STEM has found more use in the ADF mode (e.g. Crewe et al.) exploiting the large contrast arising from heavy atoms. In BF imaging (CTEM and STEM) the constrast is roughly proportional to the scattering amplitude f α Z3/4 whereas in DF (CTEM and STEM) imaging it is roughly proportional to the scattering cross σ α Z3/2 where Z is atomic number, a form that is advantageous foatom discrimination.


1998 ◽  
Vol 4 (S2) ◽  
pp. 646-647
Author(s):  
Richard R. Vanfleet ◽  
John Silcox

The demands of the National Technology Roadmap for Semiconductors will necessitate measurement of dopant concentrations with greater spatial resolution than now possible. Current experimental and simulation experience indicate that Annular Dark Field (ADF) imaging in a Scanning Transmission Electron Microscope (STEM) should be able to determine dopant distributions with near atomic resolution. The ADF signal is derived from electrons diffusely scattered to high angles, resulting in contrast due to atomic number (Z-contrast) and defects in the crystal lattice. Thus, heavy atoms can be imaged by their Z-contrast and small atoms by the misfit strain induced in the silicon lattice. Atomic number scattering is proportional to Zn where n is between 1.5 and 1.9 depending upon the inner detector angle of the ADF detector.


1994 ◽  
Vol 357 ◽  
Author(s):  
J. L. Lee ◽  
J. Silcox

AbstractImages of the YBa2Cu3OT7−x (YBCO) / BaF2 interface obtained with a scanning transmission electron microscope (STEM) show a relatively wide (∼40 Å) band of contrast at the interface, despite attempts to orient the interface plane parallel to the beam. Simulation of STEM annular dark field (ADF) images of several different interface geometries suggests that strain is the dominant cause of this wide band of contrast at the interface. In particular, it is the dislocations which run normal to the beam direction which make a significant contribution to the width of the contrast band in the case of this YBCO / BaF2 interface. A line scan taken across the interface using energy dispersive X-ray spectrometry (EDX) suggests that there is no significant Ba concentration at the interface, indicating that Z-contrast is not the primary contrast mechanism in these ADF images of the YBCO / BaF2 interface.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Kazuhisa Sato ◽  
Keigo Yanajima ◽  
Toyohiko J. Konno

We report on atomic structure imaging of epitaxial L10CoPt nanoparticles using chemically sensitive high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Highly ordered nanoparticles formed by annealing at 973 K show single-variant structure with perpendicularc-axis orientation, while multivariant ordered domains are frequently observed for specimens annealed at 873 K. It was found that the (001) facets of the multivariant particles are terminated by Co atoms rather than by Pt, presumably due to the intermediate stage of atomic ordering. Coexistence of single-variant particles and multivariant particles in the same specimen film suggests that the interfacial energy between variant domains be small enough to form such structural domains in a nanoparticle as small as 4 nm in diameter.


2010 ◽  
Vol 44 (1) ◽  
pp. 111-121 ◽  
Author(s):  
K. Z. Baba-Kishi

Electron diffraction patterns recorded using a scanning transmission electron microscope (STEM) from PbMg1/3Nb2/3O3(PMN) crystallites and PbZn1/3Nb2/3O3(PZN) crystals show weak and systematic continuous diffuse streaking along the 〈110〉 directions. Detailed high-angle annular dark-field (HAADF) images recordedviaan aberration-corrected STEM show that theB-site cations in PMN and PZN undergo correlated and long-range displacements towards the Pb2+ions on the (110) planes. The planarB-site displacement measured from the centres of the octahedra is about 0.3–0.5 Å in PMN and about 0.20–0.4 Å in PZN. In the HAADF images of the PMN crystallites and PZN crystals studied, there is insufficient evidence for systematic long-range planar displacements of the Pb2+ions. The observed Pb2+ion displacements in PMN and PZN appear randomly distributed, mostly displaced along 〈110〉 towards theB-site columns. There is also evidence of possible stress-related distortion in certain unit cells of PMN. In the relaxors studied, two distinct types of displacements were observed: one is the long-range planarB-site spatial displacement on the (110) planes, correlated with the Pb2+ions, possibly resulting in the observed diffuse streaking; the other is short-range Pb2+ion displacement on the (110) planes. The observed displacement status indicates a mutual attraction between the Pb ions and theB-site cations in which theBsites undergo the largest spatial displacements towards the Pb ions along 〈110〉.


Sign in / Sign up

Export Citation Format

Share Document