New imaging modes in STEM

Author(s):  
A.V. Jones

The most often quoted advantage of STEM over conventional TEM is the ability to produce multiple simultaneous images by the use of multiple detector systems. In practice, this postulated advantage has seldom been fully utilised, mainly because of the practical difficulties in designing such detector systems.Most STEMs to date have been constructed as two-channel instruments combining annular dark-field imaging with either filtered bright-freld or inelastic imaging. More complex forms of bright-field detector have been employed1, as have parallel-readout systems for energy-loss spectra but the ability of the spectrometer to produce multiple simultaneous images has not been fully utilised.The basis of the problem lies in the fact that the objective lens and the detector system(s) have in most cases been designed by the manufacturers as separate entities in order to simplify the later addition of user-specific detectors. Since the acceptance angle of even the best spectrometers is relatively small, additional post-specimen lenses [with their attendant aberrations] had to be added in order to make full use of the spectrometer.

2001 ◽  
Vol 7 (S2) ◽  
pp. 344-345
Author(s):  
G. Möbus ◽  
R.E. Dunin-Borkowski ◽  
C.J.D. Hethėrington ◽  
J.L. Hutchison

Introduction:Atomically resolved chemical analysis using techniques such as electron energy loss spectroscopy and annular dark field imaging relies on the ability to form a well-characterised sub-nm electron beam in a FEGTEM/STEM [1-2]. to understand EELS+EDX-signal formation upon propagation of a sub-nm beam through materials we first have to assess precisely the beam intensity distribution in vacuum and find conditions for the best obtainable resolution.Experimental Details:Modern TEM/STEM instruments combine features of both imaging and scanning technology. The beam forming capability approaches closely that for dedicated STEMs, while CCD recording devices allow us to measure the beam profile by direct imaging at magnifications up to 1.5 M. The recording of a “z-section” series through the 3D intensity distribution of the cross-over can therefore be realised by recording of a “condenser focal series”.


2001 ◽  
Vol 7 (S2) ◽  
pp. 188-189
Author(s):  
R.R. Vanfleet

Annular Dark Field imaging has the potential to be directly quantifiable. By this I mean that with careful measurement, the absolute image intensity has physical meaning. Unlike Bright Field TEM, the ADF image has no contrast reversals with focus and with the exception of thick specimens there are no contrast reversals with changes in thickness. Thus, image intensity is related to thickness, composition, orientation, and structure of local regions whose size is determined by the electron probe. The ability to extract quantitative information about the specimen from the intensity requires careful collection of the intensity data and a solid understanding of how that intensity will change with thickness, composition, orientation, and structure. The qualitative effect of thickness and composition has been well shown in the literature but more quantitative approaches have been lacking.The simplest models of ADF imaging treat each atom interacting


2016 ◽  
Vol 169 ◽  
pp. 1-10 ◽  
Author(s):  
Andreas Beyer ◽  
Jürgen Belz ◽  
Nikolai Knaub ◽  
Kakhaber Jandieri ◽  
Kerstin Volz

2016 ◽  
Vol 22 (S3) ◽  
pp. 304-305
Author(s):  
Shunsuke Yamashita ◽  
Shogo Koshiya ◽  
Kazuo Ishizuka ◽  
Koji Kimoto

2009 ◽  
Vol 15 (S2) ◽  
pp. 1082-1083
Author(s):  
D Masiel ◽  
B Reed ◽  
T LaGrange ◽  
ND Browning

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


Author(s):  
M.M.G. Latting ◽  
W. Walkosz ◽  
R.F. Klie

Annular Bright Field (ABF) is a relatively new method of Scanning Transmission Electron Microscopy (STEM) imaging that is desirable because of its ability to provide additional visual information in terms of showing lightweight atoms, whereas standard dark field imaging does not. In order to better understand the parameters necessary to perfect this method, this research article aimed to study a specific property of this imaging method: the dependence of sample thickness on image quality and atomic resolution. Multislice calculations were utilized to generate atomic potentials that were used to simulate different thicknesses of β-Si3N4. The resulting images were then examined to measure atomic full width at half-maximum (FWHM) in order to have a quantifiable value to support visual selection of the best ABF output image. Comparison of image quality/atomic resolution and FWHM values suggested that as a general trend, as sample thickness increases, atomic resolution and image quality deteriorate, citing Huygens' Principle of Classical Optics via the propagation of spherical electron waves through a vacuum. This study will bring a new awareness to the necessary precision required by researchers' sample preparation during Annular Bright Field imaging to yield the best image of their respective samples.


2011 ◽  
Vol 17 (5) ◽  
pp. 759-765 ◽  
Author(s):  
Tanmay Das ◽  
Somnath Bhattacharyya

AbstractStructure and chemistry across the rare earth oxide-Ge interfaces of a Gd2O3-Ge-Gd2O3 heterostructure grown on p-Si (111) substrate using encapsulated solid phase epitaxy method have been studied at nanoscale using various transmission electron microscopy methods. The structure across both the interfaces was investigated using reconstructed phase and amplitude at exit plane. Chemistry across the interfaces was explored using elemental mapping, high-angle annular dark-field imaging, electron energy loss spectroscopy, and energy dispersive X-ray spectrometry. Results demonstrate the structural and chemical abruptness of both the interfaces, which is most essential to maintain the desired quantum barrier structure.


Sign in / Sign up

Export Citation Format

Share Document