Three-dimensional localization of poly(A) RNA and splicing components in the nucleus

Author(s):  
Kenneth C. Carter ◽  
Douglas Bowman ◽  
Walter Carrington ◽  
Kevin Fogarty ◽  
John A. McNeil ◽  
...  

The physical distribution of active genes has long been a subject of interest and speculation, however technical limitations have necessitated that it be addressed only by indirect approaches with sometimes contradictory results. However, developments in fluorescence in situ hybridization methodologies allow the position of specific genes and RNAs to be visualized directly within intact cells, thus providing a more direct means to study such questions. To address whether compartmentalization occurs during the production and processing of pre-mRNA in mammalian somatic cells we have recently investigated the distribution of nuclear polyadenylated transcripts which represent approximately 90% of all pre-mRNA. We found that poly(A) RNA forms discrete nuclear “transcript domains” which are specifically positioned with respect to the underlying genome and contain snRNP antigens of the pre-mRNA splicing class. Several lines of evidence indicate a close spatial and temporal linkage between transcription and processing of pol II RNAs (reviewed in 5), therefore, it is possible that poly(A) RNA transcript domains reflect a clustering of active genes at these sites.

Author(s):  
W.F. Marshall ◽  
A.F. Dernburg ◽  
B. Harmon ◽  
J.W. Sedat

Interactions between chromatin and nuclear envelope (NE) have been implicated in chromatin condensation, gene regulation, nuclear reassembly, and organization of chromosomes within the nucleus. To further investigate the physiological role played by such interactions, it will be necessary to determine which loci specifically interact with the nuclear envelope. This will not only facilitate identification of the molecular determinants of this interaction, but will also allow manipulation of the pattern of chromatin-NE interactions to probe possible functions. We have developed a microscopic approach to detect and map chromatin-NE interactions inside intact cells.Fluorescence in situ hybridization (FISH) is used to localize specific chromosomal regions within the nucleus of Drosophila embryos and anti-lamin immunofluorescence is used to detect the nuclear envelope. Widefield deconvolution microscopy is then used to obtain a three-dimensional image of the sample (Fig. 1). The nuclear surface is represented by a surface-harmonic expansion (Fig 2). A statistical test for association of the FISH spot with the surface is then performed.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1819
Author(s):  
Tatyana Karamysheva ◽  
Svetlana Romanenko ◽  
Alexey Makunin ◽  
Marija Rajičić ◽  
Alexey Bogdanov ◽  
...  

The gene composition, function and evolution of B-chromosomes (Bs) have been actively discussed in recent years. However, the additional genomic elements are still enigmatic. One of Bs mysteries is their spatial organization in the interphase nucleus. It is known that heterochromatic compartments are not randomly localized in a nucleus. The purpose of this work was to study the organization and three-dimensional spatial arrangement of Bs in the interphase nucleus. Using microdissection of Bs and autosome centromeric heterochromatic regions of the yellow-necked mouse (Apodemus flavicollis) we obtained DNA probes for further two-dimensional (2D)- and three-dimensional (3D)- fluorescence in situ hybridization (FISH) studies. Simultaneous in situ hybridization of obtained here B-specific DNA probes and autosomal C-positive pericentromeric region-specific probes further corroborated the previously stated hypothesis about the pseudoautosomal origin of the additional chromosomes of this species. Analysis of the spatial organization of the Bs demonstrated the peripheral location of B-specific chromatin within the interphase nucleus and feasible contact with the nuclear envelope (similarly to pericentromeric regions of autosomes and sex chromosomes). It is assumed that such interaction is essential for the regulation of nuclear architecture. It also points out that Bs may follow the same mechanism as sex chromosomes to avoid a meiotic checkpoint.


2010 ◽  
Vol 207 (9) ◽  
pp. 1835-1841 ◽  
Author(s):  
Han-Yu Shih ◽  
Michael S. Krangel

Studies have suggested that antigen receptor loci adopt contracted conformations to promote long-distance interactions between gene segments during V(D)J recombination. The Tcra/Tcrd locus is unique because it undergoes highly divergent Tcrd and Tcra recombination programs in CD4−CD8− double negative (DN) and CD4+CD8+ double positive (DP) thymocytes, respectively. Using three-dimensional fluorescence in situ hybridization, we asked whether these divergent recombination programs are supported by distinct conformational states of the Tcra/Tcrd locus. We found that the 3′ portion of the locus is contracted in DN and DP thymocytes but not in B cells. Remarkably, the 5′ portion of the locus is contracted in DN thymocytes but is decontracted in DP thymocytes. We propose that the fully contracted conformation in DN thymocytes allows Tcrd rearrangements involving Vδ gene segments distributed over 1 Mb, whereas the unique 3′-contracted, 5′-decontracted conformation in DP thymocytes biases initial Tcra rearrangements to the most 3′ of the available Vα gene segments. This would maintain a large pool of distal 5′ Vα gene segments for subsequent rounds of recombination. Thus, distinct contracted conformations of the Tcra/Tcrd locus may facilitate a transition from a Tcrd to a Tcra mode of recombination during thymocyte development.


1991 ◽  
Vol 39 (11) ◽  
pp. 1495-1506 ◽  
Author(s):  
P M Motte ◽  
R Loppes ◽  
M Menager ◽  
R Deltour

We report the 3-D arrangement of DNA within the nucleolar subcomponents from two evolutionary distant higher plants, Zea mays and Sinapis alba. These species are particularly convenient to study the spatial organization of plant intranucleolar DNA, since their nucleoli have been previously reconstructed in 3-D from serial ultra-thin sections. We used the osmium ammine-B complex (a specific DNA stain) on thick sections of Lowicryl-embedded root fragments. Immunocytochemical techniques using anti-DNA antibodies and rDNA/rDNA in situ hybridization were also applied on ultra-thin sections. We showed on tilted images that the OA-B stains DNA throughout the whole thickness of the section. In addition, very low quantities of cytoplasmic DNA were stained by this complex, which is now the best DNA stain used in electron microscopy. Within the nucleoli the DNA was localized in the fibrillar centers, where large clumps of dense chromatin were also visible. In the two plant species intranucleolar chromatin forms a complex network with strands partially linked to chromosomal nucleolar-organizing regions identified by in situ hybridization. This study describes for the first time the spatial arrangement of the intranucleolar chromatin in nucleoli of higher plants using high-resolution techniques.


1994 ◽  
Vol 16 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Stephen E. Mahoney ◽  
Stephen W. Paddock ◽  
Louis C. Smith ◽  
Dorothy E. Lewis ◽  
Madeleine Duvic

Development ◽  
1988 ◽  
Vol 104 (1) ◽  
pp. 77-85 ◽  
Author(s):  
M.L. Snead ◽  
W. Luo ◽  
E.C. Lau ◽  
H.C. Slavkin

Position- and time-restricted amelogenin gene transcription was analysed in developing tooth organs using in situ hybridization with asymmetric complementary RNA probes produced from a cDNA specific to the mouse 26 × 10(3) Mr amelogenin. In situ analysis was performed on developmentally staged fetal and neonatal mouse mandibular first (M1) and maxillary first (M1) molar tooth organs using serial sections and three-dimensional reconstruction. Amelogenin mRNA was first detected in a cluster of ameloblasts along one cusp of the M1 molar at the newborn stage of development. In subsequent developmental stages, amelogenin transcripts were detected within foci of ameloblasts lining each of the five cusps comprising the molar crown form. The number of amelogenin transcripts appeared to be position-dependent, being more abundant on one cusp surface while reduced along the opposite surface. Amelogenin gene transcription was found to be bilaterally symmetric between the developing right and left M1 molars, and complementary between the M1 and M1 developing molars; indicating position-restricted gene expression resulting in organ stereoisomerism. The application of in situ hybridization to forming tooth organ geometry provides a novel strategy to define epithelial-mesenchymal signal(s) which are believed to be responsible for organ morphogenesis, as well as for temporal- and spatial-restricted tissue-specific expression of enamel extracellular matrix.


Biomaterials ◽  
2015 ◽  
Vol 58 ◽  
pp. 93-102 ◽  
Author(s):  
Subeom Park ◽  
Jooyeon Park ◽  
Insu Jo ◽  
Sung-Pyo Cho ◽  
Dongchul Sung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document