Spatial and temporal expression of fibronecttns and integrins during Xenopus development

Author(s):  
Douglas W. DeSimone ◽  
M. Susan Dalton ◽  
Mark D. Hens ◽  
Bethanne Hill ◽  
Joe W. Ramos ◽  
...  

A central challenge in biology is to understand the cellular processes that direct morphogenesis and the formation of the basic body plan during development. These events are controlled to large extent, by adhesive interactions of cells with one another and with their extracellular environments. Specifically, we are investigating the structure, function and expression of two groups of molecules thought to play important roles in promoting cell adhesion and migration in the embryo: fibronectins (FNs), which are large extracellular matrix (ECM) glycoproteins with many adhesion related functions; and integrins, which are the cellular transmembrane-receptors for FNs and several other components of the ECM.

2010 ◽  
Vol 188 (1) ◽  
pp. 157-173 ◽  
Author(s):  
Feng Ye ◽  
Guiqing Hu ◽  
Dianne Taylor ◽  
Boris Ratnikov ◽  
Andrey A. Bobkov ◽  
...  

Increased affinity of integrins for the extracellular matrix (activation) regulates cell adhesion and migration, extracellular matrix assembly, and mechanotransduction. Major uncertainties concern the sufficiency of talin for activation, whether conformational change without clustering leads to activation, and whether mechanical force is required for molecular extension. Here, we reconstructed physiological integrin activation in vitro and used cellular, biochemical, biophysical, and ultrastructural analyses to show that talin binding is sufficient to activate integrin αIIbβ3. Furthermore, we synthesized nanodiscs, each bearing a single lipid-embedded integrin, and used them to show that talin activates unclustered integrins leading to molecular extension in the absence of force or other membrane proteins. Thus, we provide the first proof that talin binding is sufficient to activate and extend membrane-embedded integrin αIIbβ3, thereby resolving numerous controversies and enabling molecular analysis of reconstructed integrin signaling.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yasushi Taniguchi

Hoxgenes encode homeodomain-containing transcription factors that determine cell and tissue identities in the embryo during development.Hoxgenes are also expressed in various adult tissues and cancer cells. InDrosophila, expression of cell adhesion molecules, cadherins and integrins, is regulated by Hox proteins operating in hierarchical molecular pathways and plays a crucial role in segment-specific organogenesis. A number of studies using mammalian cultured cells have revealed that cell adhesion molecules responsible for cell-cell and cell-extracellular matrix interactions are downstream targets of Hox proteins. However, whether Hox transcription factors regulate expression of cell adhesion molecules during vertebrate development is still not fully understood. In this review, the potential roles Hox proteins play in cell adhesion and migration during vertebrate body patterning are discussed.


2008 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeffrey J Atkinson ◽  
Tracy L Adair-Kirk ◽  
Diane G Kelley ◽  
Daphne deMello ◽  
Robert M Senior

Oncogene ◽  
2020 ◽  
Vol 39 (18) ◽  
pp. 3666-3679 ◽  
Author(s):  
Mario De Piano ◽  
Valeria Manuelli ◽  
Giorgia Zadra ◽  
Jonathan Otte ◽  
Per-Henrik D. Edqvist ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
David de Agustín-Durán ◽  
Isabel Mateos-White ◽  
Jaime Fabra-Beser ◽  
Cristina Gil-Sanz

The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.


Sign in / Sign up

Export Citation Format

Share Document