Morphometric analysis of cellular interactions with the endothelium during the development of arterial lesions using Scanning Electron Microscopy and digital image analysis

Author(s):  
M.E. Rosenfeld ◽  
C. Karboski ◽  
M.F. Prescott ◽  
P. Goodwin ◽  
R. Ross

Previous research documenting the chronology of the cellular interactions that occur on or below the surface of the endothelium during the initiation and progression of arterial lesions, primarily consisted of descriptive studies. The recent development of lower cost image analysis hardware and software has facilitated the collection of high resolution quantitative data from microscopic images. In this report we present preliminary quantitative data on the sequence of cellular interactions that occur on the endothelium during the initiation of atherosclerosis or vasculitis utilizing digital analysis of images obtained directly from the scanning electron microscope. Segments of both atherosclerotic and normal arteries were obtained from either diet-induced or endogenously (WHHL) hypercholesterolemic rabbits following 1-4 months duration of hypercholesterolemia and age matched control rabbits. Vasculitis was induced in rats following placement of an endotoxin soaked thread adjacent to the adventitial surface of arteries.

2010 ◽  
Vol 177 ◽  
pp. 530-532 ◽  
Author(s):  
Xin Gang Yu ◽  
Shi Song Luo ◽  
Yan Na Gao ◽  
Hong Fei Wang ◽  
Yue Xiang Li ◽  
...  

The pore structure and microstructure of the foam concrete was analyzed by scanning electron microscopy and light microscopy combined with digital image analysis. The results show that: (1) even-distributed fine and close pores resulting in high strength and low permeability; (2) uneven-distributed large size pores and open pores lead to low strength and high permeability; (3) light microscopy combined with digital image analysis is a cheap and convenient tool fitting for the pore structure analysis of the foam concrete; (4) scanning electron microscopy is very appropriate for the pore structure and microstructure analysis of the foam concrete.


1984 ◽  
Vol 121 (2) ◽  
pp. 81-84 ◽  
Author(s):  
K. Pye

AbstractImage analysis is rapidly becoming an integral part of scanning electron microscopy. A number of analogue and digital image analysis systems of varying sophistication are now commercially available for the SEM. This paper illustrates how one such relatively simple system, the IMAS image analyser manufactured by Cambridge Technology, can be used to obtain rapid quantitative estimates of porosity and mineral abundance in backscattered electron images of polished rock sections.


2017 ◽  
Vol 130 (10) ◽  
pp. 1845-1855 ◽  
Author(s):  
Faye M. Nixon ◽  
Thomas R. Honnor ◽  
Nicholas I. Clarke ◽  
Georgina P. Starling ◽  
Alison J. Beckett ◽  
...  

2021 ◽  
Author(s):  
Rowan Mclachlan ◽  
Ashruti Patel ◽  
Andrea G Grottoli

Coral morphology is influenced by genetics, the environment, or the interaction of both, and thus is highly variable. This protocol outlines a non-destructive and relatively simple method for measuring Scleractinian coral sub-corallite skeletal structures (such as the septa length, theca thickness, and corallite diameter, etc.) using digital images produced as a result of digital microscopy or from scanning electron microscopy. This method uses X and Y coordinates of points placed onto photomicrographs to automatically calculate the length and/or diameter of a variety of sub-corallite skeletal structures in the Scleractinian coral Porites lobata. However, this protocol can be easily adapted for other coral species - the only difference may be the specific skeletal structures that are measured (for example, not all coral species have a pronounced columella or pali, or even circular corallites). This protocol is adapted from the methods described in Forsman et al. (2015) & Tisthammer et al. (2018). There are 4 steps to this protocol: 1) Removal of Organic Tissue from Coral Skeletons 2) Imaging of Coral Skeletons 3) Photomicrograph Image Analysis 4) Calculation of Corallite Microstructure Size This protocol was written by Dr. Rowan McLachlan and was reviewed by Ashruti Patel and Dr. Andréa Grottoli. Acknowledgments Leica DMS 1000 and Scanning Electron Microscopy photomicrographs used in this protocol were acquired at the Subsurface Energy Materials Characterization and Analysis Laboratory (SEMCAL), School of Earth Sciences at The Ohio State University, Ohio, USA. I would like to thank Dr. Julie Sheets, Dr. Sue Welch, and Dr. David Cole for training me on the use of these instruments.


2015 ◽  
Vol 59 (3) ◽  
pp. 87-90 ◽  
Author(s):  
J. Stoulil ◽  
P. Šedá ◽  
M. Anisová ◽  
Z. Fencl ◽  
P. Novák ◽  
...  

Abstract The paper is focused on analyses of dark copper patina defects that were formed on one sheet under the same conditions. Roofs of ten historical buildings were studied by image analysis and samples of two roofs were subjected to more detailed destructive analysis. These samples were studied by means of scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffraction and infrared spectroscopy. Both types of patina are composed of brochantite. Green patinas consisted of a pure brochantite and they had a fl at and compact surface. Conversely, black patina contained a high degree of impurities (ammonia cations, nitrates, silicates) and the surface was rough. The proportion of dark patina was higher in south and east facing surfaces, where washing by rainfall is more difficult.


1976 ◽  
Vol 71 (1) ◽  
pp. 314-322 ◽  
Author(s):  
R Molday ◽  
R Jaffe ◽  
D McMahon

The cellular slime mold, Dictyostelium discoideum, is a convenient model for studying cellular interactions during development. Evidence that specific cell surface components are involved in cellular interactions during its development has been obtained by Gerisch and co-workers (1, 2) using immunological techniques. Smart and Hynes (3) have shown that a cell surface protein can be iodinated on cells in aggregation phase, but not in vegetative phase, by the lactoperoxidase procedure. Recently, McMahon et al. (4), and Hoffman and McMahon have demonstrated, by SDS gel electrophoresis, considerable differences in cell surface proteins and glycoproteins of plasma membranes isolated from cells at different stages of development. Plant lectins have also been used to monitor changes in cell surface properties of D. discoideum cells during development. Weeks and co-workers (5, 6) have detected differences in the binding and agglutination of cells by concanavalin A (Con A). Gillette and Filosa (7) have shown that Con A inhibits cell aggregation and prematurely induces cyclic AMP phosphodiesterase. Capping of Con A receptors has also been reported (8). Reitherman et al. (9) have recently reported that agglutination of cells by several plant lectins and the slime mold agglutination, discoidin, changes during development. Such studies indicate that differences in surface properties exist for cells at various stages of development. However, owing to the uncertainties in the factors which contribute to lectin-induced cell agglutination (10), the molecular basis for these observations remain to be determined. In this study, we have used microspheres (11-14) coupled to either Con A or wheat germ agglutinin (WGA) as visual markers to study by scanning electron microscopy the topographical distribution of lectin receptors on D. discoideum cells fixed at different stages of development. We also describe the effect of labeling on the distribution of lectin receptors and on the morphology of the cell surface.


Sign in / Sign up

Export Citation Format

Share Document