In situ observation on electron beam induced chemical vapor deposition by transmission electron microscopy

Author(s):  
Toshinari Ichihashi
Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


2021 ◽  
Vol 21 (4) ◽  
pp. 2538-2544
Author(s):  
Nguyen Minh Hieu ◽  
Nguyen Hoang Hai ◽  
Mai Anh Tuan

Tin oxides nanowires were prepared by chemical vapor deposition using shadow mask. X-ray diffraction indicated that the products were tetragonal having crystalline structure with lattice constants a = 0.474 nm and c = 0.318 nm. The high-resolution transmission electron microscopy revealed that inter planar spacing is 0.25 nm. The results chemical mapping in scanning transmission electron microscopy so that the two elements of Oxygen and Tin are distributed very homogeneously in nanowires and exhibit no apparent elements separation. A bottom-up mechanism for SnO2 growth process has been proposed to explain the morphology of SnO2 nanowires.


1997 ◽  
Vol 468 ◽  
Author(s):  
Jing-Hong Li ◽  
Olga M. Kryliouk ◽  
Paul H. Holloway ◽  
Timothy J. Anderson ◽  
Kevin S. Jones

ABSTRACTMicrostructures of GaN films grown on the LiGaO2 by metalorganic chemical vapor deposition (MOCVD) have been characterized by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). TEM and HRTEM results show that high quality single-crystal wurtzite GaN films have been deposited on the LiGaO2 and that the GaN film and the LiGaO2 have the following orientation relationship: (2110)(0002)GaN ̂ (002)LiGaO2 ^ 5–8°. A higher density of threading dislocations and stacking faults have been observed near the GáN/LiGaO2 interface, even though the lattice mismatch of GaN to LiGaO2 is only ∼1%. Threading dislocations with burgers vector b=<0001> and b=a/3<1120> are predominant in the GaN films. Also the GaN films contain some columnar inversion domain boundaries (IDBs). Both TEM and HRTEM results reveal that there is an unexpected amorphous or nano-crystalline inter-layer between the GaN and the LiGaO2 with a thickness of 50–100 nm.


1991 ◽  
Vol 235 ◽  
Author(s):  
Yung-Jen Lin ◽  
Ming-Deng Shieh ◽  
Chiapying Lee ◽  
Tri-Rung Yew

ABSTRACTSilicon epitaxial growth on silicon wafers were investigated by using plasma enhanced chemical vapor deposition from SiH4/He/H2. The epitaxial layers were growm at temperatures of 350°C or lower. The base pressure of the chamber was greater than 2 × 10−5 Torr. Prior to epitaxial growth, the wafer was in-situ cleaned by H2 baking for 30 min. The epi/substrate interface and epitaxial layers were observed by cross-sectional transmission electron microscopy (XTEM). Finally, the influence of the ex-situ and in-situ cleaning processes on the qualities of the interface and epitaxial layers was discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document