Flux-line observation by electron Holography

Author(s):  
Akira Tonomura

In electron microscopy, the intensity of an electron beam transmitted through an object can be observed. While in electron holography, the phase of the electron beam can also be observed and displayed as an interference micrograph. Using a technique unique to holography, the precision of phase measurements can be increased to 1/100 of the electron wavelength. An interference micrograph of a magnetic object can be interpreted in a straightforward way: Contour fringes directly indicate projected magnetic flux lines and a constant magnetic flux of h/e (= 4 × 10-15 Wb) flows between two adjacent fringes (See Fig. 1).Examples of magnetic recordings are shown in Fig. 2. Flux lines inside and outside of the magnetic tapes, recorded in different ways, can directly and quantitatively be observed as interference micrographs. Figure 2 (a) shows an example of in-plane magnetic recording. Two magnetization streams, pointed in opposite directions, merge and produce vortices in the transition region similar to those produced by streams of water.

Author(s):  
K. Harada ◽  
T. Matsuda ◽  
J.E. Bonevich ◽  
M. Igarashi ◽  
S. Kondo ◽  
...  

Previous observations of magnetic flux-lines (vortex lattices) in superconductors, such as the field distribution of a flux-line, and flux-line dynamics activated by heat and current, have employed the high spatial resolution and magnetic sensitivity of electron holography. And recently, the 2-D static distribution of vortices was also observed by this technique. However, real-time observations of the vortex lattice, in spite of scientific and technological interest, have not been possible due to experimental difficulties. Here, we report the real-time observation of vortex lattices in a thin superconductor, by means of Lorentz microscopy using a 300 kV field emission electron microscope. This technique allows us to observe the dynamic motion of individual vortices and record the events on a VTR system.The experimental arrangement is shown in Fig. 1. A Nb thin film for transmission observation was prepared by chemical etching. The grain size of the film was increased by annealing, and single crystals were observed with a thickness of 50∼90 nm.


Author(s):  
J. Bonevich ◽  
D. Capacci ◽  
G. Pozzi ◽  
K. Harada ◽  
H. Kasai ◽  
...  

The successful observation of superconducting flux lines (fluxons) in thin specimens both in conventional and high Tc superconductors by means of Lorentz and electron holography methods has presented several problems concerning the interpretation of the experimental results. The first approach has been to model the fluxon as a bundle of flux tubes perpendicular to the specimen surface (for which the electron optical phase shift has been found in analytical form) with a magnetic flux distribution given by the London model, which corresponds to a flux line having an infinitely small normal core. In addition to being described by an analytical expression, this model has the advantage that a single parameter, the London penetration depth, completely characterizes the superconducting fluxon. The obtained results have shown that the most relevant features of the experimental data are well interpreted by this model. However, Clem has proposed another more realistic model for the fluxon core that removes the unphysical limitation of the infinitely small normal core and has the advantage of being described by an analytical expression depending on two parameters (the coherence length and the London depth).


1996 ◽  
Vol 32 (3) ◽  
pp. 1477-1480 ◽  
Author(s):  
V. Cingoski ◽  
T. Kuribayashi ◽  
K. Kaneda ◽  
H. Yamashita

Soft Matter ◽  
2011 ◽  
Vol 7 (12) ◽  
pp. 5756 ◽  
Author(s):  
Ryan Schmidt ◽  
Jason Benkoski ◽  
Kevin Cavicchi ◽  
Alamgir Karim

Author(s):  
Daniel Golubchik ◽  
Emil Polturak ◽  
Gad Koren

According to the Kibble–Zurek model, flux lines are spontaneously created during a fast conductor–superconductor phase transition. The model predicts both the spatial density and the correlations of the flux array. We present the design of a magneto-optical system with a projected single-flux-line resolution. Such a system can allow detailed measurements of the distribution of flux created spontaneously during a conductor–superconductor phase transition.


2021 ◽  
Author(s):  
◽  
Anne-Hélène Puichaud

<p>High-temperature superconductors are of great interest because they can transport electrical current without loss. For real-world applications, the amount of current, known as the critical current Ic, that can be carried by superconducting wires is the key figure of merit. Large Ic values are necessary to off-set the higher cost of these wires. The factors that improve Ic (microstructure/performance relationship) in the state-of-the-art coated conductor wires based on YBa₂Cu₃O₇ (YBCO) are not fully understood. However, microstructural defects that immobilise (or pin) tubes of magnetic flux (known as vortices) inside the coated conductors are known to play a role in improving Ic. In this thesis, the vortex-defect interaction in YBCO superconductors was investigated with high-end transmission electron microscopy (TEM) techniques using two approaches.  First, the effect of dysprosium (Dy) addition and oxygenation temperature on the microstructure and critical current were investigated in detail. Changing only the oxygenation temperature leads to many microstructural changes in pure YBCO coated conductors. It was found that Dy addition reduces the sensitivity of the YBCO to the oxygenation temperature, in particular it lowers the microstructural disorder while maintaining the formation of nanoparticles, which both contribute to the enhancement of Ic.  In the second approach, two TEM based techniques (off-axis electron holography and Lorentz microscopy) were used to study the magnetic flux vortices. Vortex imaging was attempted with a TEM operated at 300 kV on both a YBCO crystal as well as a YBCO coated conductor. Many challenges were encountered including sample preparation, inhomogeneity, and geometry, in addition to the need to perform measurements at cryogenic temperatures. Although vortices were not able to be observed in the coated conductors, tentative observation of vortices in a YBCO crystal was made using Lorentz microscopy. Improvements for future electron holography experiments on YBCO at low voltage are suggested. This work represents a pioneering step towards directly imaging vortices in YBCO using more widely available microscopes with the aim of better understanding flux pinning to ultimately boost Ic in superconducting wires.</p>


Sign in / Sign up

Export Citation Format

Share Document