scholarly journals Structural Transition in Cu/Fe Multilayered Thin Films

1996 ◽  
Vol 441 ◽  
Author(s):  
Tai D. Nguyen ◽  
Alison Chaiken ◽  
Troy W. Barbee

AbstractMicrostructural development of Fe and Cu in Cu/Fe multilayers of layer thickness 1.5–10 nm prepared on Si, Ge, and MgO substrates by ion beam sputtering has been studied using x-ray diffraction and cross-sectional transmission electron microscopy (TEM). High-angle x-ray results show an fcc Cu structure and a distorted bcc structure in the Fe layers at 5 nm-layer-thickness and smaller, and bcc Fe (110) and fcc Cu (111) peaks in the 10 nm-layer-thickness samples. Lowangle x-ray diffraction indicates that the layers in the samples grown on MgO substrates have a more uniform and smooth layered structure than the multilayers grown on Si and Ge substrates, which results from larger grains in the MgO substrate samples for the same layer thickness. Relationships among growth, microstructure, and interfaces with layer thickness are discussed.

2010 ◽  
Vol 63 ◽  
pp. 392-395
Author(s):  
Yoshifumi Aoi ◽  
Satoru Furuhata ◽  
Hiromi Nakano

ZrN/TiN multi-layers were synthesized by ion beam sputtering technique. Microstructure and mechanical property of the ZrN/TiN multi-layers were characterized and the relationships between microstructure and hardness of the ZrN/TiN multi-layers with various bilayer thicknesses and thickness ratios were investigated. The microstructure of multi-layers have been investigated using transmission electron microscope (TEM) and X-ray diffraction (XRD).


2007 ◽  
Vol 336-338 ◽  
pp. 1788-1790
Author(s):  
Yu Ju Chen ◽  
Wen Cheng J. Wei

Ion-beam sputtering deposition is a physical deposited method which uses accelerated ionbeam to sputter oxide or metal targets, and deposits atoms on substrate. Thin films of yttrium-stabilized zirconia (YSZ) were deposited on Si (100) wafer and NiO/YSZ plate. Scanning electron microscopy and transmission electron microscopy with EDS were employed to study the microstructural and chemically stoichiometric results of the films and the crystal growth process by various heat treatments. X-ray diffraction was also used to analysis crystalline phase of the YSZ films. The influence of different targets, substrates deposited efficiency and the properties of the film will be presented and discussed.


2010 ◽  
Vol 123-125 ◽  
pp. 157-160
Author(s):  
Zhen Zhen Zhou ◽  
Deng Lu Hou ◽  
Li Ma ◽  
Cong Mian Zhen

“Green” multiferroic BaTiO3/FeBSi composite films were grown by pulsed laser deposition and ion beam sputtering on general Pt/Ti/SiO2/Si substrates. Room temperature X-ray diffraction and Raman scattering show that the crystal structures of BaTiO3 and FeBSi are tetragonal and amorphous, respectively, and no additional or intermediate phase peaks appears in the composite films. A cross-sectional scanning electron microscopy image clearly demonstrates a 2-2 type structure with sharp interface between the top FeBSi layer and bottom BaTiO3 layer. The magnetic properties of the top FeBSi are obviously modified by the bottom BaTiO3. The composite films show obvious ferroelectric feature.


Author(s):  
A.E.M. De Veirman ◽  
F.J.G. Hakkens ◽  
W.M.J. Coene ◽  
F.J.A. den Broeder

There is currently great interest in magnetic multilayer (ML) thin films (see e.g.), because they display some interesting magnetic properties. Co/Pd and Co/Au ML systems exhibit perpendicular magnetic anisotropy below certain Co layer thicknesses, which makes them candidates for applications in the field of magneto-optical recording. It has been found that the magnetic anisotropy of a particular system strongly depends on the preparation method (vapour deposition, sputtering, ion beam sputtering) as well as on the substrate, underlayer and deposition temperature. In order to get a better understanding of the correlation between microstructure and properties a thorough cross-sectional transmission electron microscopy (XTEM) study of vapour deposited Co/Pd and Co/Au (111) MLs was undertaken (for more detailed results see ref.).The Co/Pd films (with fixed Pd thickness of 2.2 nm) were deposited on mica substrates at substrate temperatures Ts of 20°C and 200°C, after prior deposition of a 100 nm Pd underlayer at 450°C.


1986 ◽  
Vol 74 ◽  
Author(s):  
B. Park ◽  
F. Spaepen ◽  
J. M. Poate ◽  
D. C. Jacobson

AbstractArtificial amorphous Si/Ge multilayers of equiatomic average composition with a repeat length around 60 Å have been prepared by ion beam sputtering. Implantation with 29Si led to a decrease in the intensity of the X-ray diffraction peaks arising from the composition modulation, which could be used for an accurate measurement of the implantation-induced mixing distance. Subsequent annealing showed no difference between the interdiffusivity in an implanted and unimplanted sample.


1993 ◽  
Vol 8 (10) ◽  
pp. 2600-2607 ◽  
Author(s):  
M. Brunel ◽  
S. Enzo ◽  
M. Jergel ◽  
S. Luby ◽  
E. Majkova ◽  
...  

Tungsten/silicon multilayers with tungsten layers of a thickness of 1–2 nm were prepared by means of electron beam deposition. Their structure and thermal stability under rapid thermal annealing were investigated by a combination of x-ray diffraction techniques and cross-sectional transmission electron microscopy. The crystallization behavior was found to depend on the interdiffusion and mixing at the tungsten/silicon interfaces during deposition as well as during annealing. The as-deposited tungsten/silicon multilayers were amorphous and remained stable after annealing at 250 °C/40 s. Interdiffusion and crystallization occurred after annealing all samples from 500 °C/40 s up to 1000 °C/20 s. By performing the same heat treatment in the tungsten/silicon multilayers, the formation of body-centered cubic W was observed with a layer thickness ratio δW/δsi = 1, whereas tetragonal WSi2 was detected in tungsten/silicon multilayers with a layer thickness ratio of δw/δsi ∼0.25. This dependence of the crystallization products on the layer thickness ratio δw/δsi originates from the different phenomena of interdiffusion and mixing at the tungsten/silicon interfaces. The possible formation of bcc tungsten as a first stage of crystallization of tungsten-silicon amorphous phase, rich in tungsten, is discussed.


1991 ◽  
Vol 229 ◽  
Author(s):  
Steven M. Hues ◽  
John L. Makous

AbstractA softening of the shear elastic constant c44 has been observed previously in Mo/Ni superlattices as a function of decreasing bilayer thickness below approximately 100 Å.[1] We have prepared a series of Mo/Ni superlattice films by ion beam sputtering doped with varying concentrations of either aluminum or oxygen. The chemical and structural properties of these films were then determined using x-ray diffraction (XRD) and Auger electron spectroscopy (AES). The shear elastic properties were characterized by measuring the surface acoustic wave (SAW) velocity of the deposited films. We demonstrate structural and elastic property effects resulting from Al and O impurity incorporation in Mo/Ni multilayers.


1993 ◽  
Vol 316 ◽  
Author(s):  
W. A. Lewis ◽  
M. Farle ◽  
B. M. Clemens ◽  
R. L. White

ABSTRACTWe report the results of our microstructural investigations into the origin of in-plane uniaxial magnetic anisotropies induced in Ni and Fe thin films by low energy ion beam assisted deposition. 1000 Å films were prepared by ion beam sputtering onto amorphous silica substrates under simultaneous bombardment by 100 eV Xe+ ions under an oblique angle of incidence. The induced anisotropy is studied as a function of ion-to-adsorbate atom arrival ratio, R, from values of 0 to 0.35. The maximum anisotropy field is 150 Oe for Ni and 80 Oe for Fe, but their hard axes are oriented orthogonal to each other. Asymmetric x-ray diffraction is employed to study both in-plane and out-of-plane lattice spacings and crystallographic orientation. In agreement with previous work, we find evidence of a anisotropic in-plane strain of magnitude 0.2-0.5%. In all films, the direction perpendicular to the ion bombardment is compressed relative to parallel. The uniaxial magnetic anisotropy is correlated with this in-plane anisotropic strain using a simple magnetoelastic model.


1985 ◽  
Vol 54 ◽  
Author(s):  
G. J. Campisi ◽  
H. B. DIETRICH ◽  
M. Delfino ◽  
D. K. Sadana

ABSTRACTSeveral silicon wafers were implanted with 58Ni+ at an energy of 170 keV and a current density of 12 μA cm-2 to doses between 5 × 1015 and 1.8 × 1018 ions cm-2. The substrates were phosphorus doped n-type <100> Czochralski grown silicon wafers. The wafers were water cooled during implantation and the surface temperatures was monitored with an infrared pyrometer and controlled to < 70°C. Samples were subsequently furnace annealed at 900°C for 30 min in nitrogen. The as-implanted and annealed samples were analyzed using cross-sectional transmission electron microscopy (XTEM), Rutherford backscattering (RBS) spectroscopy, spreading resistance depth profiling (SRP), and scanning electron microscopy (SEM). Micro-crystallites of NiSi2 (2–5nm) buried within an amorphous matrix formed during the 1.5 × 1017 ions cm-2 dose implantation. For higher doses above 3 × 1017 Ni+ cm-2, ion beam sputtering occurred. After annealing, rapid diffusion of nickel and solid-phase recrystallization of the amorphous regions occurred.


Sign in / Sign up

Export Citation Format

Share Document