Alterations in surface substructure and degranulation of subapical cytoplasmic granules by mezereinu (MZ) in toad urinary bladder epithelia

Author(s):  
A. J. Mia ◽  
L. X. Oakfoid ◽  
T. Yorio

The increase in transepithelial water flow induced by antidiuretic hormone (ADH) occurs through the ADH V2 receptor, and includes the stimulation of adenylcyclase, an increase in cAMP synthesis and the activation of protein kinase A. These biochemical events in amphibian urinary bladder tissues are reported to be accompanied by apical membrane transformations including the induction of numerous microvilli, and an increase in apical surface area as a result of incorporation of water channels. Amphibian epithelia also contain an ADH V1 receptor coupled to phosphoinositide metabolism and inositol phosphate release. Recently, it was demonstrated that mezerein (MZ), a non-phorbol activator of protein kinase C (PKC)increased transepithelial water flow when added to mucosal surface. The magnitude of water transport was less and occurred over a longer period of time than compared to ADH-stimulated tissues (7,and also Table 1). However, there is little or no information available on ultrastructural studies linking the events due to the ADH V1 receptor and osmotic water flow. Presently, we report on morphological and cytological observations which suggests that the ADH V1 receptor cascade may play a role in the insertion of water channels into the apical membrane possibly through the activation of PKC. The present study utilizes mezerein (MZ), a non-phorbol activator of protein kinase C (PKC) to examine the effect of MZ on epithelial cytomorphology.

2019 ◽  
Vol 317 (1) ◽  
pp. F99-F106 ◽  
Author(s):  
Mohammed Ziaul Haque ◽  
Pablo A. Ortiz

The apical Na+-K+-2Cl− cotransporter (NKCC2) mediates NaCl reabsorption by the thick ascending limb (TAL). The free radical superoxide ([Formula: see text]) stimulates TAL NaCl absorption by enhancing NKCC2 activity. In contrast, nitric oxide (NO) scavenges [Formula: see text] and inhibits NKCC2. NKCC2 activity depends on the number of NKCC2 transporters in the TAL apical membrane and its phosphorylation. We hypothesized that [Formula: see text] stimulates NKCC2 activity by enhancing apical surface NKCC2 expression. We measured surface NKCC2 expression in rat TALs by surface biotinylation and Western blot analysis. Treatment of TALs with [Formula: see text] produced by exogenous xanthine oxidase (1 mU/ml) and hypoxanthine (500 µM) stimulated surface NKCC2 expression by ~18 ± 5% ( P < 0.05). [Formula: see text]-stimulated surface NKCC2 expression was blocked by the [Formula: see text] scavenger tempol (50 µM). Scavenging H2O2 with 100 U/ml catalase did not block the stimulatory effect of xanthine oxidase-hypoxanthine (22 ± 8% increase from control, P < 0.05). Inhibition of endogenous NO production with Nω-nitro-l-arginine methyl ester enhanced surface NKCC2 expression by 21 ± 6% and, when added together with xanthine oxidase-hypoxanthine, increased surface NKCC2 by 41 ± 10% ( P < 0.05). Scavenging [Formula: see text] with superoxide dismutase (300 U/ml) decreased this stimulatory effect by 60% (39 ± 4% to 15 ± 10%, P < 0.05). Protein kinase C inhibition with Gö-6976 (100 nM) blocked [Formula: see text]-stimulated surface NKCC2 expression ( P < 0.05). [Formula: see text] did not affect NKCC2 phosphorylation at Thr96/101 or its upstream kinases STE20/SPS1-related proline/alanine-rich kinase-oxidative stress-responsive kinase 1. We conclude that [Formula: see text] increases surface NKCC2 expression by stimulating protein kinase C and that this effect is blunted by endogenous NO. [Formula: see text]-stimulated apical trafficking of NKCC2 may be involved in the enhanced surface NKCC2 expression observed in Dahl salt-sensitive rats.


1990 ◽  
Vol 96 (4) ◽  
pp. 789-808 ◽  
Author(s):  
L B Shi ◽  
Y X Wang ◽  
A S Verkman

Osmotic water permeability (Pf) in toad bladder is regulated by the vasopressin (VP)-dependent movement of vesicles containing water channels between the cytoplasm and apical membrane of granular cells. Apical endosomes formed in the presence of serosal VP have the highest Pf of any biological or artificial membrane (Shi and Verkman. 1989. J. Gen. Physiol. 94:1101-1115). We examine here: (a) the influence of protein kinase A and C effectors on transepithelial Pf (Pfte) in intact bladders and on the number and Pf of labeled endosomes, and (b) whether endosome Pf can be modified physically or biochemically. In paired hemibladder studies, Pfte induced by maximal serosal VP (50 mU/ml, 0.03 cm/s) was not different than that induced by 8-Br-cAMP (1 mM), forskolin (50 microM), VP + 8-Br-cAMP, or VP + forskolin. Pf was measured in endosomes labeled in intact bladders with carboxyfluorescein by a stopped-flow, fluorescence-quenching assay using an isolated microsomal suspension; the number and Pf (0.08-0.11 cm/s, 18 degrees C) of labeled endosomes was not different in bladders treated with VP, forskolin, and 8-Br-cAMP. Protein kinase C activation by 1 microM mucosal phorbol myristate acetate (PMA) induced submaximal bladder Pfte (0.015 cm/s) and endosome Pf (0.022 cm/s) in the absence of VP, but had little effect on maximal Pfte and endosome Pf induced by VP. However, PMA increased by threefold the number of apical endosomes with high Pf formed in response to serosal VP. Pf of endosomes containing the VP-sensitive water channel decreased fourfold by increasing membrane fluidity with hexanol or chloroform (0-75 mM); Pf of phosphatidylcholine liposomes (0.002 cm/s) increased 2.5-fold under the same conditions. Endosome Pf was mildly pH dependent, strongly inhibited by HgCl2, but not significantly altered by GTP gamma S, Ca, ATP + protein kinase A, and phosphatase action. We conclude that: (a) water channels cycled in endocytic vesicles are functional and not subject to physiological regulation, (b) VP and forskolin do not have cAMP-independent cellular actions, (c) activation of protein kinase C stimulates trafficking of water channels, but does not increase the number of apical membrane water channels induced by maximal VP, and (d) water channel function is sensitive to membrane fluidity. By using VP and PMA together, large quantities of endosomes containing the VP-sensitive water channel are labeled with fluid-phase endocytic markers.


1993 ◽  
Vol 265 (6) ◽  
pp. C1723-C1728 ◽  
Author(s):  
A. D. Bonev ◽  
M. T. Nelson

We explored the possibility that muscarinic receptor stimulation can inhibit ATP-sensitive K+ (KATP) channels in smooth muscle cells from guinea pig urinary bladder. Whole cell K+ currents were measured in smooth muscle cells isolated from the detrusor muscle of the guinea pig bladder. Stimulation of muscarinic receptors by carbachol (CCh; 10 microM) inhibited KATP currents by 60.7%. Guanosine 5'-O-(2-thiodiphosphate) in the pipette (internal) solution prevented the CCh-induced inhibition of KATP currents. Activators of protein kinase C (PKC), a diacylglycerol analogue, and phorbol 12-myristate 13-acetate inhibited KATP currents by 63.5 and 73.9%, respectively. Blockers of PKC (bisindolylmaleimide GF-109203X and calphostin C) greatly reduced CCh inhibition of KATP currents. We propose that muscarinic receptor stimulation inhibits KATP channels in smooth muscle cells from urinary bladder through activation of PKC.


Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 33-44 ◽  
Author(s):  
J. Wang ◽  
L. Mayernik ◽  
J.F. Schultz ◽  
D.R. Armant

Heparin-binding EGF-like growth factor (HB-EGF) is expressed in the mouse endometrial epithelium during implantation exclusively at sites apposed to embryos and accelerates the development of cultured blastocysts, suggesting that it may regulate peri-implantation development in utero. We have examined the influence of HB-EGF on mouse trophoblast differentiation in vitro and the associated intracellular signaling pathways. HB-EGF both induced intracellular Ca2+ signaling and accelerated trophoblast development to an adhesion-competent stage, but only late on gestation day 4 after ErbB4, a receptor for HB-EGF, translocated from the cytoplasm to the apical surface of trophoblast cells. The acceleration of blastocyst differentiation by HB-EGF was attenuated after inhibition of protein tyrosine kinase activity or removal of surface heparan sulfate, as expected. Chelation of intracellular Ca2+ blocked the ability of HB-EGF to accelerate development, as did inhibitors of protein kinase C or calmodulin. The absence of any effect by a phospholipase C inhibitor and the requirement for extracellular Ca2+ suggested that the accrued free cytoplasmic Ca2+ did not originate from inositol phosphate-sensitive intracellular stores, but through Ca2+ influx. Indeed, N-type Ca2+ channel blockers specifically inhibited the ability of HB-EGF to both induce Ca2+ signaling and accelerate trophoblast development. We conclude that HB-EGF accelerates the differentiation of trophoblast cells to an adhesion-competent stage by inducing Ca2+ influx, which activates calmodulin and protein kinase C. An upstream role for ErbB4 in this pathway is implicated by the timing of its translocation to the trophoblast surface.


1984 ◽  
Vol 246 (4) ◽  
pp. F501-F508
Author(s):  
L. G. Palmer ◽  
N. Speez

To test the hypothesis that antidiuretic hormone- (ADH) dependent water permeability is associated with changes in apical membrane area, hormone-dependent water flow and capacitance changes were measured in the toad urinary bladder under a number of different conditions. Dose-response relationships for water flow (Jv) and capacitance increases (delta C) were similar from 1 to 20 mU/ml ADH. At higher concentrations, Jv reached a plateau, while delta C decreased. The decrease in delta C was prevented by elimination of the osmotic gradient across the tissue. Serosal hydrazine (10 mM) increased Jv sevenfold and delta C threefold in the presence of 1 mU/ml ADH. Mucosal NH4Cl, at constant mucosal pH, increased Jv by 50-100%, but did not significantly change delta C. In the absence of an osmotic gradient, mucosal NH+4 increased delta C by 50%. NH4Cl had no effect on hydroosmotic response to 8-bromo-adenosine 3',5'-cyclic monophosphate (cAMP). Mucosal CO2 (9%) decreased Jv by greater than 90%, and delta C by 60% with 20 mU/ml ADH. Mucosal CO2 also inhibited the hydroosmotic response to 8-bromo-cAMP. Removal of serosal Na diminished cAMP-dependent Jv and delta C. The results confirmed the close relationship between ADH-dependent water permeability and membrane capacitance. They indicate, however, that under some circumstances membrane may be retrieved from the apical surface without affecting water permeability.


2004 ◽  
Vol 46 (4) ◽  
pp. 462-465 ◽  
Author(s):  
Attila Varga ◽  
Gabriella Czifra ◽  
Béla Tállai ◽  
Tamás Németh ◽  
Ilona Kovács ◽  
...  

1986 ◽  
Vol 236 (3) ◽  
pp. 757-764 ◽  
Author(s):  
R J Schimmel ◽  
D Dzierzanowski ◽  
M E Elliott ◽  
T W Honeyman

The present experiments were undertaken to investigate the role of the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns-4-P) and phosphatidylinositol 4,5-biphosphate (PtdIns-4,5-P2) in the alpha 1-adrenergic stimulation of respiration in isolated hamster brown adipocytes. Exposure of isolated brown adipocytes to the alpha-adrenergic-receptor agonist phenylephrine provoked a breakdown of 30-50% of the PtdIns-4-P and PtdIns-4,5-P2 after prelabelling of the cells with [32P]Pi. Coincident with the breakdown of phosphoinositides was an accumulation of labelled phosphatidic acid, which continued for the duration of the cell incubation. The time course of phosphoinositide breakdown was defined more precisely by pulse-chase experiments. Under these conditions, phenylephrine caused radioactivity in phosphatidylinositol, PtdIns-4-P and PtdIns-4,5-P2 to fall by more than 50% within 30 s and to remain at the depressed value for the duration of the incubation (10 min). This phospholipid response to alpha-adrenergic stimulation was blocked by exposure of the cells to phorbol 12-myristate 13-acetate (PMA); likewise phenylephrine stimulation of respiration was prevented by PMA. beta-Adrenergic stimulation of respiration and inhibition of respiration by 2-chloroadenosine and insulin were, however, unaffected by treatment with PMA. On the assumption that PMA is acting in these cells as an activator of protein kinase C, these results suggest the selective interruption of alpha-adrenergic actions in brown adipocytes by activated protein kinase C. These findings suggest that breakdown of phosphoinositides is an early event in alpha-adrenergic stimulation of brown adipocytes which may be important for the subsequent stimulation of respiration. The results from the pulse-chase studies also suggest, however, that phenylephrine-stimulated breakdown of inositol phospholipids is a short-lived event which does not appear to persist for the entire period of exposure to the alpha 1-adrenergic ligand.


Sign in / Sign up

Export Citation Format

Share Document