Quantitative high-resolution electron microscopy (HREM) of defects in ordered polymers

Author(s):  
Patricia M. Wilson ◽  
David C. Martin

Efforts in our laboratory and elsewhere have established the utility of low dose high resolution electron microscopy (HREM) for imaging the microstructure of crystalline and liquid crystalline polymers. In a number of polymer systems, direct imaging of the lattice spacings by HREM has provided information about the size, shape, and relative orientation of ordered domains in these materials. However, because of the extent of disorder typical in many polymer microstructures, and because of the sensitivity of most polymer materials to electron beam damage, there have been few studies where the contrast observed in HREM images has been analyzed in a quantitative fashion.Here, we discuss two instances where quantitative information about HREM images has been used to provide new insight about the organization of crystalline polymers in the solid-state. In the first, we study the distortion of the polymer lattice planes near the core of an edge dislocation and compare these results to theories of dislocations in anisotropic and liquid crystalline solids. In the second, we investigate the variations in HREM contrast near the edge of wedge-shaped samples. The polymer used in this study was the diacetylene DCHD, which is stable to electron beam damage (Jc = 20 C/cm2) and highly crystalline. The instrument used in this work was a JEOL 4000 EX HRTEM with a beam blanidng device. More recently, the 4000 EX has been installed with instrumentation for dynamically recording scattered electron beam currents.

1989 ◽  
Vol 159 ◽  
Author(s):  
A. Catana ◽  
M. Heintze ◽  
P.E. Schmid ◽  
P. Stadelmann

ABSTRACTHigh Resolution Electron Microscopy (HREM) was used to study microstructural changes related to the CoSi/Si-CoSi/CoSi2/Si-CoSi2/Si transformations. CoSi is found to grow epitaxially on Si with [111]Si // [111]CoSi and < 110 >Si // < 112 >CoSi. Two CoSi non-equivalent orientations (rotated by 180° around the substrate normal) can occur in this plane. They can be clearly distinguished by HRTEM on cross-sections ( electron beam along [110]Si). At about 500°C CoSi transforms to CoSi2. Experimental results show that the type B orientation relationship satisfying [110]Si // [112]CoSi is preserved after the initial stage of CoSi2 formation. At this stage an epitaxial CoSi/CoSi2/Si(111) system is obtained. The atomic scale investigation of the CoSi2/Si interface shows that a 7-fold coordination of the cobalt atoms is observed in both type A and type B epitaxies.


Author(s):  
S.Y. Zhang ◽  
J.M. Cowley

The combination of high resolution electron microscopy (HREM) and nanodiffraction techniques provided a powerful means for characterizing many of the interface structures which are of fundamental importance in materials science. In this work the interface structure between magnesium oxide and aluminum has been examined by HREM (with JEM-200CX) and nanodiffraction (with HB-5). The interfaces were formed by evaporating Al on freshly prepared cubic MgO smoke crystals under various vacuum conditions, at 10 -4, 10-5 10-6 and 10-7 torr. The Al layers on the MgO (001) surface are about 100Å thick. TEM observations were performed with the incident beam along the MgO [100] direction so that the interface could be revealed clearly. The nanodiffraction patterns were obtained with the electron beam of 15Å diameter parallel to the interface.


Author(s):  
Kenneth H. Downing ◽  
Robert M. Glaeser

The contrast observed in images of beam-sensitive, crystalline specimens is found to be significantly less than one would predict based on observations of electron diffraction patterns of the specimens. Factors such as finite coherence, inelastic scattering, and the limited MTF of the photographic emulsion account for some decrease in contrast. It appears, however, that most of the loss in signal is caused by motion of the specimen during exposure to the electron beam. The introduction of point and other defects in the crystal, resulting from radiation damage, causes bending and lateral motion, which degrade the contrast in the image. We have therefore sought to determine whether the beam-induced specimen motion can be reduced by reducing the area of the specimen which is illuminated at any one time.


Author(s):  
T. Kizuka ◽  
N. Tanaka

Various kinds of nanometer scale processings are required to produce advanced materials, for example, nano-structured electric devices. Electron beam processing at nanometer scale using STEM and TEM, such as drilling and line-writing, is recently interested as a most useful method. Details of structural change during the processing should be elucidated at atomic resolution in order to establish the processing. In the present work we have processed lead telluride (PbTe) films with nanometer electron beam in a high-resolution transmission electron microscope and in-situ observed the variation of atomic arrangements during the processing.PbTe of 99.99% was vacuum-deposited on air-cleaved (001) surfaces of sodium chloride at room temperature. Time-resolved high-resolution electron microscopy was carried out at room temperature using a 200-kV electron microscope (JEOL, JEM2010) equipped with a high sensitive TV camera and a video tape recorder. The spatial resolution of thesystem was 0.2 nm at 200 kV and the time resolution was 1/60 s. Electron beam irradiation density was 120 A/cm2 at the processing and the observation.


Sign in / Sign up

Export Citation Format

Share Document