Investigations on electronic structure of YMnO3 by electron energy loss spectra and first-principle calculations

2019 ◽  
Vol 34 (4) ◽  
pp. 339-344
Author(s):  
S. Wang ◽  
J. Cai ◽  
H. D. Xu ◽  
H. L. Tao ◽  
Y. Cui ◽  
...  

Crystal structure and electronic structure of YMnO3 were investigated by X-ray diffraction and transmission electron microscopy related techniques. According to the density of states (DOS), the individual interband transitions to energy loss peaks in the low energy loss spectrum were assigned. The hybridization of O 2p with Mn 3d and Y 4d analyzed by the partial DOS was critical to the ferroelectric nature of YMnO3. From the simulation of the energy loss near-edge structure, the fine structure of O K-edge was in good agreement with the experimental spectrum. The valence state of Mn (+3) in YMnO3 was determined by a comparison between experiment and calculations.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sandhya Susarla ◽  
Pablo García-Fernández ◽  
Colin Ophus ◽  
Sujit Das ◽  
Pablo Aguado-Puente ◽  
...  

AbstractPolar vortices in oxide superlattices exhibit complex polarization topologies. Using a combination of electron energy loss near-edge structure analysis, crystal field multiplet theory, and first-principles calculations, we probe the electronic structure within such polar vortices in [(PbTiO3)16/(SrTiO3)16] superlattices at the atomic scale. The peaks in Ti $$L$$ L -edge spectra shift systematically depending on the position of the Ti4+ cations within the vortices i.e., the direction and magnitude of the local dipole. First-principles computation of the local projected density of states on the Ti $$3d$$ 3 d orbitals, together with the simulated crystal field multiplet spectra derived from first principles are in good agreement with the experiments.


1986 ◽  
Vol 33 (1) ◽  
pp. 22-24 ◽  
Author(s):  
Th. Lindner ◽  
H. Sauer ◽  
W. Engel ◽  
K. Kambe

1995 ◽  
Vol 404 ◽  
Author(s):  
Kalpana S Katti ◽  
Maoxu Qian ◽  
Mehmet Sarikaya

AbstractIn this work a transmission electron microscopy (TEM) technique was used in obtaining local dielectric properties calculated from optical parameters for dynamic investigation of the effect of cubic to tetragonal phase transformation in barium titanate. In order to obtain in situ local dielectric during phase transformation, Kramers-Kronig relations were applied using the transmission electron energy loss (EELS) measurements. The optical excitations in the EELS spectra were consistent with the band structure results. The Re (1/ε) (real part of the dielectric function) obtained from the energy loss data indicated a change at the phase transformation. A broadening of the valence plasmon excitation suggested an order-disorder nature to the cubic to tetragonal transformation. In situ electron energy loss near edge structure (ELNES) studies from 500–700 eV energy range near the O-K edge exhibited a pre-edge feature that is associated with the Ti-L1, edge which further indicates an order-disorder nature to the phase transformation. The significance of the results is discussed.


2001 ◽  
Vol 203 (2) ◽  
pp. 135-175 ◽  
Author(s):  
V. J. Keast ◽  
A. J. Scott ◽  
R. Brydson ◽  
D. B. Williams ◽  
J. Bruley

2001 ◽  
Vol 706 ◽  
Author(s):  
Tadashi Mitsui ◽  
Takashi Sekiguchi ◽  
Mikka Nishitani-Gamo ◽  
Yafei Zhang ◽  
Toshihiro Ando

AbstractEffects of hydrogen sulfide on the structure of carbon nanotubes (CNTs) were studied using high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS). The CNTs were synthesized with an iron thin-film catalyst by microwave plasma-assisted CVD on the diamond substrate. The HRTEM images revealed that essentially all of the CNTs obtained in this study were multiwall (MWCNT). The addition of H2S resulted in nanotubes with split skins as cornhusks and/or frills. Electron energy loss spectra of the cornhusks indicated that they consist of sp2, sp3 and amorphous carbon phase. The spectra revealed that the sp3 to sp2 ratio at the points where cornhusks divide from the main stem was more than that at the edge of the cornhusks. No evidence of sulfur incorporation into the MWCNTs grown with the H2S addition was found. We speculate that the chemical nature of sulfur on the CNT growth yields such anomalous structure.


2003 ◽  
Vol 18 (4) ◽  
pp. 772-779 ◽  
Author(s):  
C. M. Wang ◽  
Y. Zhang ◽  
W. J. Weber ◽  
W. Jiang ◽  
L. E. Thomas

The microstructural features of highly damaged 4H–SiC implanted with Al22+ ions at 450 K were studied using transmission electron microscopy (TEM) and electron energy-loss spectroscopy. Conventional TEM images reveal that the crystalline SiC domains are highly strained/distorted when the relative disorder on the Si sublattice ranges between about 0.4 and 0.8, as determined by Rutherford backscattering spectrometry in channeling geometry. As the relative disorder approaches 1.0, the high strain contrast appears to be relieved, and localized amorphized domains are observed. Plasmon-loss energy shows a red shift following the implantation, and the magnitude of the red shift increases with increasing relative disorder. Based on the red shift, the estimated volume expansion is approximately 8% for highly damaged crystalline SiC and approximately 16% for the amorphous state. Energy-loss near-edge-structure of both the C and Si K edge reveals the existence of Si–Si and C–C bonding in the Al22+ implanted SiC.


1984 ◽  
Vol 41 ◽  
Author(s):  
Michael Scheinfein ◽  
Michael Isaacson

AbstractUsing a 0.5 nm diameter probe of 100 keV electrons, we have been able to detect significant changes in the transmission electron energy loss spectra in the region of valence shell and L23 shell excitation within a spatial extent of 0.4 nm of an Al-AlF3 interface. The spectra have been recorded with a dose significantly less than the critical dose for destruction of the AlF3.


Sign in / Sign up

Export Citation Format

Share Document