Comparison of Imazethapyr and Paraquat-Based Weed Control Systems in Peanut (Arachis hypogaea)

1995 ◽  
Vol 9 (4) ◽  
pp. 813-818 ◽  
Author(s):  
Timothy L. Grey ◽  
Glenn R. Wehtje ◽  
Robert H. Walker ◽  
Krishna P. Paudel

Field studies were conducted from 1991 through 1993 to compare Weed control, peanut tolerance, yield, and net return from imazethapyr applied alone or in combination with paraquat. Sicklepod and Florida beggarweed were controlled with paraquat early POST followed by a POST application of either paraquat with 2,4-DB or paraquat with 2,4-DB and bentazon. Imazethapyr-based early POST treatments offered no improvement. An early POST application of paraquat with bentazon or imazethapyr was required for maximum control of bristly starbur. Imazethapyr applied alone early POST, with no further treatment, provided optimum yellow nutsedge control. Maximum yield and net return were associated with any paraquat-containing early POST-applied treatment followed by one of the tank mixed POST options.

2002 ◽  
Vol 29 (1) ◽  
pp. 52-57 ◽  
Author(s):  
B. Brecke ◽  
G. Wehtje ◽  
K. Paudel

Abstract Field studies were conducted in Florida and Alabama in 1998 and 1999 to evaluate imazapic [70gai/ha preemergence (PRE) or early postemergence (EPOST)], diclosulam (18 or 26 g ai/ha PRE or 18 g/ha EPOST) or imazapic + diclosulam (35 + 13 g/ha PRE or 35 + 9 g/ha EPOST). These treatments were applied alone or supplemented with either a paraquat + bentazon tank mixture or 2,4-DB. The intent was to determine if diclosulam, which has a mode of action similar to imazapic and is less persistent and less costly, could be incorporated into systems with other herbicides and thereby offer an alternative to imazapic. Maximum yield and economic return were consistently associated with only two treatments, imazapic at 70 g/ha EPOST and imazapic + diclosulam at 35 + 9 g/ha EPOST. However, none of the diclosulam-based systems provided a more favorable economic return than imazapic applied alone due to poor sicklepod control with diclosulam. Sicklepod control with diclosulam was improved with the addition of either paraquat + bentazon or 2,4-DB, but control was less than that obtained with imazapic. Diclosulam-based systems could be identified that were as effective as imazapic alone in controlling Florida beggarweed (diclosulam 26 g/ha EPOST or imazapic + diclosulam PRE or EPOST), bristly starbur (diclosulam 18 g/ha PRE or imazapic + diclosulam PRE or EPOST) and yellow nutsedge (imazapic + diclosulam EPOST). Thus, diclosulam-based systems may offer an economic advantage over imazapic in areas void of sicklepod. Neither diclosulam nor imazapic adversely affected any of five runner-type peanut cultivars (Georgia Green, Southern Runner, ViruGuard, Florida MDR 98, or Florida C-99R) when applied at twice labeled rates.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 615-621 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald L. Wiley ◽  
F. Robert Walls

Field studies in 1990 and 1991 at six locations in Georgia and one location in North Carolina evaluated AC 263,222 for weed control, peanut tolerance, and yield. AC 263,222 applied early postemergence at 71 g ai ha−1controlled bristly starbur, coffee senna, common lambsquarters,Ipomoeaspecies, prickly sida, sicklepod, smallflower morningglory, and yellow nutsedge at least 91%. AC 263,222 controlled common cocklebur 77% and Florida beggarweed from 47 to 100%. Crop injury was 4% for AC 263,222 applied once and 12% or less from two applications. Mixtures of bentazon with AC 263,222 did not improve control compared to AC 263,222 alone. Imazethapyr did not improve control of AC 263,222 systems. In several locations, bentazon reduced control of Florida beggarweed with AC 263,222 when applied in a mixture compared to AC 263,222 alone. Weed control from the standard of paraquat plus bentazon applied early postemergence followed by paraquat, bentazon plus 2,4-DB applied POST did not provide the level or spectrum of weed control as AC 263,222 systems.


Weed Science ◽  
1987 ◽  
Vol 35 (5) ◽  
pp. 700-703 ◽  
Author(s):  
John Cardina ◽  
Aubrey C. Mixon ◽  
Glenn R. Wehtje

Weed control, yield, quality, and net return in reduced-cost and standard weed control systems were studied in “Sunbelt runner’ peanuts (Arachis hypogaeaL.) planted in a twin-row pattern in 1982 to 85 at Tifton, GA, and 1982 to 84 at Headland, AL. Reduced herbicide rates and/or less expensive herbicides were used to decrease weed control costs. In years and locations where weed populations were low there were no differences in weed control, crop yield, or quality. The lowest cost treatment, which included three applications of paraquat (1,1′-dimethyl-4,4′-bipyridinium ion), caused reduced weed control at both locations in 1982 and reduced yield in 1982 and 1984. None of the systems consistently resulted in the highest weed control, crop yield, or quality. A system including reduced rates of preplant-incorporated herbicides followed by two applications of paraquat performed as well as the standard system but cost about 40% less. Due to low cost and generally high yields this system resulted in consistently high net returns. Results indicate that the potential exists for reducing herbicide inputs without sacrificing yield or quality.


2003 ◽  
Vol 30 (1) ◽  
pp. 22-27 ◽  
Author(s):  
T. L. Grey ◽  
D. C. Bridges ◽  
E. P. Prostko ◽  
E. F. Eastin ◽  
W. C. Johnson ◽  
...  

Abstract Imazapic, diclosulam, and flumioxazin have been registered for use in peanut since 1996. These herbicides provide substantial residual control of broadleaf weeds in peanut. A comprehensive review was conducted for these residual herbicides to determine their role in future weed control systems in peanuts. Weed control data for research from over 100 experiments conducted from 1990–2000 by Georgia, Florida, and Auburn Universities and USDA-ARS scientists were compiled. Residual herbicide systems evaluated were imazapic postemergence (POST) at 71 g ai/ha, flumioxazin preemergence (PRE) at 70, 87, and 104 g ai/ha, diclosulam preplant incorporated (PPI) and PRE at 18 and 26 g ai/ha, and paraquat plus bentazon early POST (EPOST). Other treatments included the residual herbicides used in combination with paraquat plus bentazon EPOST, for a total of 17 treatments. Regionally important weeds were selected and included: sicklepod, Florida beggarweed, purple and yellow nut-sedge, Ipomoea morningglory species, and smallflower morningglory. Sicklepod control with imazapic alone was 86% (50 tests), 73% (25 tests) with paraquat plus bentazon, and 63% or less with diclosulam and flumioxazin regardless of rate. Florida beggarweed control was 90% (29 tests) with flumioxazin (104 g/ha PRE); 78% (50 tests) with diclosulam 26 g/ha PPI; 72% (72 tests) with imazapic; and 70% (40 tests) with paraquat plus bentazon. Purple and yellow nutsedge control was 90% with imazapic. Yellow nutsedge control was 78% (18 tests) with diclosulam (26 g/ha PRE) and less than 69% with flumioxazin and paraquat plus bentazon. Paraquat plus bentazon increased weed control over residual herbicides alone.


2002 ◽  
Vol 29 (1) ◽  
pp. 24-29 ◽  
Author(s):  
T. L. Grey ◽  
D. C. Bridges ◽  
E. F. Eastin ◽  
G. E. MacDonald

Abstract Field studies were conducted during 1997 and 1998 at three different locations in Georgia to determine peanut and weed response to pendimethalin at 1.1 kg ai/ha applied preplantincorporated (PPI) followed by flumioxazin at 71, 87, and 105 g ai/ha applied preemergence (PRE). Other residual treatments combinations with pendimethalin PPI included flumioxazin mixed with metolachlor or dimethenamid PRE, diclosulam PRE, norflurazon PRE, and imazapic applied postemergence (POST). Herbicide combinations that included flumioxazin controlled Florida beggarweed, tropic croton, and small flower morningglory at least 78% or greater. Late season Florida beggarweed control was 90% or greater with pendimethalin PPI plus flumioxazin at 87 to 105 g/ha applied PRE. Pendimethalin plus flumioxazin did not control sicklepod or yellow nutsedge. Smallflower morningglory control with all herbicide treatments was 90% or greater. Entireleaf morningglory control (when used in combination with pendimethalin PPI) increased from 80% with flumioxazin at 105 g/ha to 90% for flumioxazin in combination with metolachlor. Yields were similar for flumioxazin, norflurazon, imazapic, and diclosulam treated peanut.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
W. J. Grichar ◽  
P. A. Dotray

Field studies were conducted from 2007 through 2009 to determine weed efficacy and peanut (Arachis hypogaeaL.) response to herbicide systems that included ethalfluralin applied preplant incorporated. Control of devil's claw (Proboscidea louisianica(Mill.) Thellung), yellow nutsedge (Cyperus esculentusL.), Palmer amaranth (Amaranthus palmeriS. Wats.), and puncturevine (Tribulus terrestrisL.) was most consistent with ethalfluralin followed by either imazapic or imazethapyr applied postemergence. Peanut stunting was 19% when paraquat alone was applied early-postemergence. Stunting increased to greater than 30% when ethalfluralin applied preplant incorporated was followed byS-metolachlor applied preemergence and paraquat applied early-postemergence. Stunting (7%) was also observed when ethalfluralin was followed by flumioxazin plusS-metolachlor applied preemergence with lactofen applied mid-postemergence. Ethalfluralin followed by paraquat applied early-postemergence reduced peanut yield when compared to the nontreated check. Ethalfluralin applied preplant incorporated followed by imazapic applied mid-postemergence provided the greatest yield (6220 kg/ha). None of the herbicide treatments reduced peanut grade (sound mature kernels plus sound splits) when compared with the nontreated check.


Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 615-620 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
E. Ford Eastin

Field studies in 1990 and 1991 evaluated treatment timings of nicosulfuron and bentazon alone and in mixture for weed control, peanut injury, and yield. The experimental areas were treated with a broadcast PPI application of benefin at 1.68 kg ai ha-1. Nicosulfuron was applied at 40 g ai ha-1and bentazon at 560 g ai ha-1. Nicosulfuron mixed with bentazon applied 1 wk after crop emergence (WAE) controlled yellow nutsedge 81%. Bentazon or bentazon plus nicosulfuron applied 1 or 3 WAE controlled smallflower morningglory at least 94%. Nicosulfuron controlled sicklepod at least 76% in 1990. However, control of sicklepod was 71% from 1 WAE nicosulfuron application in 1991 and less than 26% for 3, 5, or 7 WAE application. Bentazon controlledIpomoeaspp. at least 70% but did not control Florida beggarweed and sicklepod. Nicosulfuron alone controlled Florida beggarweed andIpomoeaspp. Nicosulfuron reduced early-season peanut growth, but peanut recovered by mid-August. Bentazon reduced nicosulfuron control of Florida beggarweed when applied 1, 3, or 5 WAE, but not 7 WAE. Bentazon mixed with nicosulfuron applied 3 WAE in 1990 reduced weed-free peanut yields compared to nicosulfuron alone. Nicosulfuron and bentazon did not significantly reduce peanut yields under weed-free conditions in 1991.


1996 ◽  
Vol 23 (1) ◽  
pp. 9-14 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
William K. Vencill

Abstract Field studies conducted in 1992 at Tifton and Midville, GA and in 1993 at Attapulgus, GA evaluated imazethapyr systems for weed control, peanut (Arachis hypogaea L.) injury, and yield. The standard of imazethapyr + paraquat early postemergence (EPOST) followed by paraquat + 2,4-DB + bentazon postemergence (POST) controlled at least 87% of bristly starbur, prickly sida, smallflower morningglory, and yellow nutsedge and the peanut crop yielded 3310 kg/ha. This standard controlled Florida beggarweed (46 and 83% control) and sicklepod (74 and 88% control) in 1992 and 1993; respectively. Imazethapyr PPI at 36 and 72 g/ha controlled bristly starbur 78 and 100%, respectively, and controlled prickly sida and smallflower morningglory at least 90%. Imazethapyr PPI at 36 and 72 g/ha controlled yellow nutsedge 83 and 80%, respectively. Imazethapyr did not control sicklepod or Florida beggarweed. Control of these two species and high peanut yields required a POST application of a paraquat mixture.


2004 ◽  
Vol 31 (2) ◽  
pp. 113-119 ◽  
Author(s):  
G. Wehtje ◽  
B. Brecke

Abstract Field studies were conducted in Florida and Alabama during 2001 and 2002 to compare weed control systems for peanut (Arachis hypogaea L.) that included only the herbicides registered on peanut that do not inhibit aceto hydroxyl acid synthase (AHAS). Three non-AHAS systems were identified that consistently preformed equivalent to imazapic, i.e., an AHAS-inhibiting herbicide that is very effective in peanut. These systems were either S-metolachlor plus flumioxazin, S-metolachlor plus S-dimethenamid, or S-metolachor plus norflurazon applied preemergence (PRE), followed by paraquat plus bentazon plus 2,4-DB applied postemergence. Greenhouse studies established that tank mixtures of S-metolachlor plus flumioxazin and S-metolachor plus norflurazon applied PRE were synergistic with respect to yellow nutsedge (Cyperus esculentus L.) control. This synergism may contribute to the excellent performance of these S-metolachlor-containing tank mixtures in the field. Identification of systems which utilize herbicides with modes of action other than AHAS inhibition could offer rotational alternatives to delay the emergence of AHAS-resistant weed biotypes, or alternatives should such biotypes become problematic.


2005 ◽  
Vol 19 (3) ◽  
pp. 560-567 ◽  
Author(s):  
Timothy L. Grey ◽  
Glenn R. Wehtje

Field studies were conducted to evaluate residual herbicides applied alone and with a contact weed control program in peanut in Georgia and Alabama. Residual herbicide treatments included pendimethalin preemergence (PRE) at 924 g ai/ha, diclosulam PRE at 18 and 26 g ai/ha, flumioxazin PRE at 70 and 104 g ai/ha, sulfentrazone PRE at 168 and 280 g ai/ha, and imazapic postemergence (POST) at 71 g ai/ha. All herbicides were applied alone and in combination with an early postemergence (EPOST) application of paraquat plus bentazon. Peanut injury ranged from 0 to 7% for diclosulam, from 0 to 28% for flumioxazin, from 0 to 59% for sulfentrazone, from 0 to 15% for imazapic, and from 4 to 12% for paraquat plus bentazon. Across locations and years, Florida beggarweed control was 92% or greater with flumioxazin PRE at 104 g/ha, 77% or greater with diclosulam PRE at 26 g/ha, 80% or greater with sulfentrazone PRE at 280 g/ha, ranged from 54 to 86% for imazapic POST, and was 68% or less for paraquat plus bentazon EPOST. For diclosulam, sulfentrazone, and imazapic, including paraquat plus bentazon EPOST improved Florida beggarweed control vs. these treatments alone. However, flumioxazin alone provided consistent and season-long Florida beggarweed control without paraquat plus bentazon EPOST. Sicklepod control with imazapic was consistently greater than 90%, but it was 70% or less with diclosulam, flumioxazin, and sulfentrazone. Paraquat plus bentazon EPOST used with the residual herbicide treatments resulted in variable sicklepod control ranging from 40 to 99%. Yellow nutsedge control was 95% or greater with sulfentrazone, varied from 56 to 93% with diclosulam, and was 87% or greater with imazapic. Tall and smallflower morningglory, wild poinsettia, Palmer amaranth, and bristly starbur control varied by residual herbicide treatment. Yields were similar for diclosulam, flumioxazin, sulfentrazone, and imazapic treated peanut.


Sign in / Sign up

Export Citation Format

Share Document