Low-Cost Weed Control Systems for Close-Row Peanuts (Arachis hypogaea)

Weed Science ◽  
1987 ◽  
Vol 35 (5) ◽  
pp. 700-703 ◽  
Author(s):  
John Cardina ◽  
Aubrey C. Mixon ◽  
Glenn R. Wehtje

Weed control, yield, quality, and net return in reduced-cost and standard weed control systems were studied in “Sunbelt runner’ peanuts (Arachis hypogaeaL.) planted in a twin-row pattern in 1982 to 85 at Tifton, GA, and 1982 to 84 at Headland, AL. Reduced herbicide rates and/or less expensive herbicides were used to decrease weed control costs. In years and locations where weed populations were low there were no differences in weed control, crop yield, or quality. The lowest cost treatment, which included three applications of paraquat (1,1′-dimethyl-4,4′-bipyridinium ion), caused reduced weed control at both locations in 1982 and reduced yield in 1982 and 1984. None of the systems consistently resulted in the highest weed control, crop yield, or quality. A system including reduced rates of preplant-incorporated herbicides followed by two applications of paraquat performed as well as the standard system but cost about 40% less. Due to low cost and generally high yields this system resulted in consistently high net returns. Results indicate that the potential exists for reducing herbicide inputs without sacrificing yield or quality.

1999 ◽  
Vol 13 (1) ◽  
pp. 139-143 ◽  
Author(s):  
Glenn Wehtje ◽  
Larry W. Wells ◽  
James H. Choate ◽  
Neil R. Martin ◽  
John M. Curtis

A 3-yr field study was conducted in peanut in which weed control systems with varying levels of herbicides, cultivation inputs, or both were supplemented with mowing to remove weeds extending above the crop canopy. Highest yield and net returns were consistently obtained with the highest level of herbicide/cultivation inputs, and mowing was of no value. However, mowing was consistently beneficial to yield and net return when the only other weed control inputs were paraquat and 2,4-DB applied at 4 wk after planting (WAP) and cultivation at 10 WAP. In the absence of any other weed control inputs, mowing was detrimental in a drought stress year, but beneficial in years with near-normal growing conditions. Although disease incidence was aggravated by the lack of weed control inputs, it was generally independent of mowing.


Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 385-391 ◽  
Author(s):  
John W. Wilcut ◽  
Glenn R. Wehtje ◽  
Tracy A. Cole ◽  
T. Vint Hicks ◽  
John A. McGuire

Postemergence treatments utilizing various combinations of fluazifop-P, paraquat, and 2,4-DB were compared to a preplant-incorporated (PPI) application of benefin followed by a ground-cracking application of alachlor and dinoseb plus naptalam and a postemergence application of 2,4-DB for weed control, peanut yield, and net economic return to land, overhead, and management. The greatest peanut yields (3-yr average of 4510 kg/ha) and net returns (3-yr average of $521/ha) were provided by a postemergence system that utilized one ground-cracking and one postemergence application of paraquat and one postemergence application of fluazifop-P and 2,4-DB. Seven postemergence systems provided equivalent or greater yield and net returns than the PPI and dinoseb plus naptalam system. Fresh weight reductions of Texas panicum, sicklepod, Florida beggarweed, and pitted morningglory from postemergence weed control systems were equivalent to reductions obtained from the PPI and dinoseb plus naptalam system. The addition of paraquat and 2,4-DB to the PPI and dinoseb plus naptalam system improved the 3-yr average peanut yield and net economic return by 510 kg/ha and $136/ha, respectively, compared to the same system without paraquat and 2,4-DB.


1995 ◽  
Vol 9 (4) ◽  
pp. 813-818 ◽  
Author(s):  
Timothy L. Grey ◽  
Glenn R. Wehtje ◽  
Robert H. Walker ◽  
Krishna P. Paudel

Field studies were conducted from 1991 through 1993 to compare Weed control, peanut tolerance, yield, and net return from imazethapyr applied alone or in combination with paraquat. Sicklepod and Florida beggarweed were controlled with paraquat early POST followed by a POST application of either paraquat with 2,4-DB or paraquat with 2,4-DB and bentazon. Imazethapyr-based early POST treatments offered no improvement. An early POST application of paraquat with bentazon or imazethapyr was required for maximum control of bristly starbur. Imazethapyr applied alone early POST, with no further treatment, provided optimum yellow nutsedge control. Maximum yield and net return were associated with any paraquat-containing early POST-applied treatment followed by one of the tank mixed POST options.


Weed Science ◽  
1987 ◽  
Vol 35 (3) ◽  
pp. 433-437 ◽  
Author(s):  
John W. Wilcut ◽  
Glenn R. Wehtje ◽  
Michael G. Patterson

Traditional weed control systems based on soil-applied herbicides and cultivations were compared with systems utilizing postemergence grass herbicides for Texas panicum (Panicum texanumBuckle. # PANTE) control in peanut (Arachis hypogaeaL. ‘Florunner′) production. Maximum net returns ($150/ha) and peanut yield were achieved with traditional systems utilizing benefin [N-butyl-N-ethyl-2,6-dinitro-4-(trifluoromethyl)benzenamine] applied preplant incorporated plus alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] and dinoseb [2-(1-methylpropyl)-4,6-dinitrophenol] applied at ground cracking and two cultivations. The postemergence system using alachlor plus dinoseb applied at ground cracking and sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio) propyl]-3-hydroxy-2-cyclohexen-1-one} applied postemergence also provided maximum net returns ($146/ha) and peanut yield.


2000 ◽  
Vol 27 (1) ◽  
pp. 11-16 ◽  
Author(s):  
G. Wehtje ◽  
B. J. Brecke ◽  
N. R. Martin

Abstract Field experiments were conducted over two growing seasons (1995 and 1996) and at two locations (Jay, FL, and Headland, AL) to identify the most effective herbicide program for Florida beggarweed [Desmodium tortuosum (SW) D.C.] control in peanut (Arachis hypogaea L.). The most common herbicides used for Florida beggarweed control—including preemergence (PRE), early-postemergence (EPOST), mid-postemergence (MPOST) and late-postemergence (LPOST) applied treatments—were evaluated in a factorial treatment arrangement. All treatments had merit and could be assembled into programs that resulted in maximum weed control, crop yield, and net returns. However, at least two of the four treatment timings were required to reach this level. Four systems were consistently associated with the maximum statistical grouping for both yield and net returns, as well as acceptable Florida beggarweed control (> 81%). These systems were (a) paraquat + bentazon applied EPOST, followed by pyridate + 2,4-DB MPOST; (b) same as (a) only preceded by norflurazon applied PRE; (c) imazapic applied EPOST followed by pyridate + 2,4-DB MPOST; and (d) norflurazon applied PRE, followed by imazapic EPOST.


Weed Science ◽  
1984 ◽  
Vol 32 (5) ◽  
pp. 584-591 ◽  
Author(s):  
David C. Bridges ◽  
Robert H. Walker ◽  
John A. McGuire ◽  
Neil R. Martin

Research was conducted from 1978 through 1980 at Headland, AL, to evaluate the use of herbicides, mechanical cultivation, and hand-hoeing as components of a total weed control system for peanuts (Arachis hypogaeaL.). Herbicides or two cultivations alone failed to provide acceptable weed control, peanut yields, or net returns for the 3-yr period. However, adding two cultivations to the herbicide treatments produced acceptable weed control, peanut yields, and net returns for the 3-yr period. Average peanut yield for herbicide(s) plus two cultivations was 3200 kg/ha with an average net return of $260/ha. Two cultivations plus two hoeings without herbicide(s) produced good results with an average 3-yr yield of 3380 kg/ha and a net return of $280/ha. Herbicide(s) plus two cultivation treatments that had net returns equal to two cultivations plus two hoeing treatments were: dinoseb (2-sec-butyl-4,6-dinitrophenol) at 5.0 kg ai/ha applied at ground-cracking ($300/ha); dinoseb + alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] at 1.7 + 3.4 kg ai/ha applied at ground-cracking ($310/ha); and alachlor at 4.5 kg/ha applied preemergence ($320/ha). Treatments containing herbicide(s) plus two cultivations plus two hoeings did not substantially improve weed control, peanut yields, or net returns over herbicide(s) plus two cultivations.


2008 ◽  
Vol 22 (4) ◽  
pp. 584-590 ◽  
Author(s):  
Wilson H. Faircloth ◽  
Jason A. Ferrell ◽  
Christopher L. Main

Peanuts are not often used as a true oilseed crop, especially for the production of fuel. However, peanut could be a feedstock for biodiesel, especially in on-farm or small cooperative businesses, where producers can dictate the cost of making their own fuel. Field studies were conducted in 2005 and 2006 to assess low-cost weed-control systems for peanuts that would facilitate the economic viability of peanut biodiesel. Four preselected herbicide costs ranging from $25 to $62/ha and two application timings were compared with nontreated ($0/ha) and typical ($115/ha) herbicide programs for weed control and peanut oil yield. A peanut oil yield goal of 930 L/ha was exceeded with multiple low-cost herbicide systems in 3 of 4 site–yr. The main effect of application timing was only significant for a single site–year in which oil yield increased linearly with cost of the PRE and POST weed-control system. An herbicide cost of $50/ha, using PRE and POST applications, was consistently among the highest in oil yield, regardless of site–year, exceeding the typical (high value) programs in 3 of 4 site–yr. Use of reduced rates of imazapic (0.5× or 0.035 kg ai/ha) was detrimental in 2 of 4 site–yr. Weed control, and thus oil yields, were most dependent on species present at each location and not on input price. Data from this series of studies will allow researchers and entrepreneurs to more accurately assess the viability and sustainability of peanut biodiesel.


2003 ◽  
Vol 30 (1) ◽  
pp. 22-27 ◽  
Author(s):  
T. L. Grey ◽  
D. C. Bridges ◽  
E. P. Prostko ◽  
E. F. Eastin ◽  
W. C. Johnson ◽  
...  

Abstract Imazapic, diclosulam, and flumioxazin have been registered for use in peanut since 1996. These herbicides provide substantial residual control of broadleaf weeds in peanut. A comprehensive review was conducted for these residual herbicides to determine their role in future weed control systems in peanuts. Weed control data for research from over 100 experiments conducted from 1990–2000 by Georgia, Florida, and Auburn Universities and USDA-ARS scientists were compiled. Residual herbicide systems evaluated were imazapic postemergence (POST) at 71 g ai/ha, flumioxazin preemergence (PRE) at 70, 87, and 104 g ai/ha, diclosulam preplant incorporated (PPI) and PRE at 18 and 26 g ai/ha, and paraquat plus bentazon early POST (EPOST). Other treatments included the residual herbicides used in combination with paraquat plus bentazon EPOST, for a total of 17 treatments. Regionally important weeds were selected and included: sicklepod, Florida beggarweed, purple and yellow nut-sedge, Ipomoea morningglory species, and smallflower morningglory. Sicklepod control with imazapic alone was 86% (50 tests), 73% (25 tests) with paraquat plus bentazon, and 63% or less with diclosulam and flumioxazin regardless of rate. Florida beggarweed control was 90% (29 tests) with flumioxazin (104 g/ha PRE); 78% (50 tests) with diclosulam 26 g/ha PPI; 72% (72 tests) with imazapic; and 70% (40 tests) with paraquat plus bentazon. Purple and yellow nutsedge control was 90% with imazapic. Yellow nutsedge control was 78% (18 tests) with diclosulam (26 g/ha PRE) and less than 69% with flumioxazin and paraquat plus bentazon. Paraquat plus bentazon increased weed control over residual herbicides alone.


1997 ◽  
Vol 24 (2) ◽  
pp. 97-101 ◽  
Author(s):  
M. C. Lamb ◽  
J. I. Davidson ◽  
J. W. Childre ◽  
N. R. Martin

Abstract Peanut yield, quality, and net return to irrigation were analyzed from commercial peanut fields in the southeastern U.S. during the 1987 through 1994 crop years. The average amount of irrigation water applied ranged from 2.51 to 28.22 cm/ha. Yields in the irrigated peanut fields averaged 569 kg/ha higher than in the nonirrigated fields. Means for farmer stock grade, jumbo shelling outturn, and seed germination also were significantly higher in the irrigated fields. Conversely, aflatoxin contamination was 140 ppb lower in the nonedible oil stock category from the irrigated fields. Yearly comparisons were made to examine significant differences in irrigation associated peanut yield and quality changes in individual crop years as well as across year comparisons for nonirrigated and irrigated practices. The net return for irrigation was examined at the quota support price, weighted average farmer stock price, and contract additional price. Average net return over total irrigation cost were $236.99, $149.22, and -$22.64 per ha, respectively.


Weed Science ◽  
1986 ◽  
Vol 34 (6) ◽  
pp. 972-979 ◽  
Author(s):  
Robert P. King ◽  
Donald W. Lybecker ◽  
Edward E. Schweizer ◽  
Robert L. Zimdahl

Grass and broadleaf weed densities and seed numbers, weed control practices, and grain yields were included in a bioeconomic model that evaluates alternative weed management strategies for continuous corn (Zea maysL.). Weed seed numbers in soil and herbicide carry-over provided intertemporal links. Four weed management strategies – two fixed, one mixed, and one flexible – were evaluated with annualized net returns as the performance indicator. The flexible strategy (weed control based on observed conditions) had the largest annualized net return for high and low initial weed seed numbers. The fixed weed management strategy (weed control predetermined) of an annual application of only a preemergence herbicide ranked second in terms of annualized net returns for high weed seed numbers. The mixed weed management strategy of alternative year applications of preemergence herbicide and “as needed” applications of postemergence herbicide ranked second for low initial weed seed numbers. The fixed weed management strategy of alternate year application of preemergence herbicide only generated the lowest annualized net return, regardless of initial weed seed numbers.


Sign in / Sign up

Export Citation Format

Share Document