Polynomial chaos assessment of design tolerances for vortex-induced vibrations of two cylinders in tandem

Author(s):  
Gianluca Geraci ◽  
Marco Donato De Tullio ◽  
Gianluca Iaccarino

AbstractThe presence of aerodynamics loadings makes the design of some classes of elastic structures, as, for instance, marine structures and risers, very challenging. Moreover, capturing the complex physical interaction between the structure and the fluid is challenging for both theoretical and numerical models. One of the most important phenomena that appear in these situations is vortex-induced vibrations. The picture is even more complicated when multiple elastic elements are close enough to interact by modifying the fluid flow pattern. In the present work, we show how the common design practice for these structures, which is entirely based on deterministic simulations, needs to be complemented by the uncertainty quantification analysis. The model problem is a structure constituted by two elastically mounted cylinders exposed to a two-dimensional uniform flow at Reynolds number 200. The presence of a manufacturing tolerance in the relative position of the two cylinders, which we consider to be a source of uncertainty, is addressed. The overall numerical procedure is based on a Navier–Stokes immersed boundary solver that uses a flexible moving least squares approach to compute the aerodynamics loadings on the structure, whereas the uncertainty quantification propagation is obtained by means of a nonintrusive polynomial chaos technique. A range of reduced velocities is considered, and the quantification, in a probabilistic sense, of the difference in the performances of this structure with respect to the case of an isolated cylinder is provided. The numerical investigation is also complemented by a global sensitivity analysis based on the analysis of variance.

Author(s):  
Mehran Rahmanian ◽  
Liang Cheng ◽  
Ming Zhao ◽  
Tongming Zhou

Vortex-induced vibrations of two side-by-side cylinders of different diameters in steady incompressible flow are studied. The diameter ratio of cylinders is fixed at 0.1. The Reynolds number is fixed at 5000 based on the large cylinder diameter and free stream velocity. A Petrov-Galerkin finite element method is used to solve the two dimensional Reynolds-averaged Navier Stokes equations using the Arbitrary Lagrangian Eulerian scheme with a SST k-ω turbulence model closure. The numerical method has been validated against available experimental results. Then, the effects of natural frequencies of the cylinders on the vibration amplitude and vortex shedding regimes are investigated. It is found that for the range of considered parameters, collision of the cylinders is dependent on the difference of the natural frequencies of the cylinders.


2021 ◽  
Vol 11 (12) ◽  
pp. 5638
Author(s):  
Selahattin Kocaman ◽  
Stefania Evangelista ◽  
Hasan Guzel ◽  
Kaan Dal ◽  
Ada Yilmaz ◽  
...  

Dam-break flood waves represent a severe threat to people and properties located in downstream regions. Although dam failure has been among the main subjects investigated in academia, little effort has been made toward investigating wave propagation under the influence of tailwater depth. This work presents three-dimensional (3D) numerical simulations of laboratory experiments of dam-breaks with tailwater performed at the Laboratory of Hydraulics of Iskenderun Technical University, Turkey. The dam-break wave was generated by the instantaneous removal of a sluice gate positioned at the center of a transversal wall forming the reservoir. Specifically, in order to understand the influence of tailwater level on wave propagation, three tests were conducted under the conditions of dry and wet downstream bottom with two different tailwater depths, respectively. The present research analyzes the propagation of the positive and negative wave originated by the dam-break, as well as the wave reflection against the channel’s downstream closed boundary. Digital image processing was used to track water surface patterns, and ultrasonic sensors were positioned at five different locations along the channel in order to obtain water stage hydrographs. Laboratory measurements were compared against the numerical results obtained through FLOW-3D commercial software, solving the 3D Reynolds-Averaged Navier–Stokes (RANS) with the k-ε turbulence model for closure, and Shallow Water Equations (SWEs). The comparison achieved a reasonable agreement with both numerical models, although the RANS showed in general, as expected, a better performance.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Le Thi Thu Hien ◽  
Nguyen Van Chien

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.


Sign in / Sign up

Export Citation Format

Share Document