Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig

1994 ◽  
Vol 11 (3) ◽  
pp. 501-517 ◽  
Author(s):  
Leo Peichl ◽  
Juncal González-Soriano

AbstractRetinal horizontal cells of four rodent species, rat, mouse, gerbil, and guinea pig were examined to determine whether they conform to the basic pattern of two horizontal cell types found in other mammalian orders. Intracellular injections of Lucifer-Yellow were made to reveal the morphologies of individual cells. Immunocytochemistry with antisera against the calcium-binding proteins calbindin D-28k and parvalbumin was used to assess population densities and mosaics.Lucifer-Yellow injections showed axonless A-type and axon-bearing B-type horizontal cells in guinea pig, but revealed only B-type cells in rat and gerbil retinae. Calbindin immunocytochemistry labeled the A-and B-type populations in guinea pig, but only a homogeneous regular mosaic of cells with B-type features in rat, mouse, and gerbil. All calbindin-immunoreactive horizontal cells in the latter species were also parvalbumin-immunoreactive; comparison with Nissl-stained retinae showed that both antisera label all of the horizontal cells. Taken together, the data from cell injections and the population studies provide strong evidence that rat, mouse, and gerbil retinae have only one type of horizontal cell, the axon-bearing B-type, where as the guinea pig has both A-and B-type cells. Thus, at least three members of the family Muridae differ from other rodents and deviate from the proposed mammalian scheme of horizontal cell types.The absence of A-type cells is apparently not linked to any peculiarities in the photoreceptor populations, and there is no consistent match between the topographic distributions of the horizontal cells and those of the cone photoreceptors or ganglion cells across the four rodent species. However, the cone to horizontal cell ratio is rather similar in the species with and without A-type cells.

1975 ◽  
Vol 38 (1) ◽  
pp. 53-71 ◽  
Author(s):  
K. Naka ◽  
N. R. Garraway

The morphology of the catfish horizontal cells is comparable to that in other fish retinas. The external horizontal cells contact cone receptors and are stellate in shape; the intermediate horizontal cells are even more so and contact rod receptors. The internal horizontal cells constitute the most proximal layer of the inner nuclear layer and may possibly be, in reality, extended processes from the other two horizontal cell types. Bipolar cells resemble those in other teleost retinas: the size and shape of their dendritic tree encompass a continuous spectrum ranging from what is known as the small to the large bipolar cells. The accepted definition of amacrine cells is sufficiently vague to justify our originating a more descriptive and less inferential name for the (axonless) neurons in the inner nuclear layer which radiate processes throughout the inner synaptic layer. These starbust and spaghetti cells vary considerably in the character and extent of their dendritic spread, but correlates exist in other vertebrate retinas. Ganglion cells are found not only in the classical ganglion layer but displaced into the inner nuclear layer as well. Several types can be distinguished on the basis of cell geometry and by the properties of their dendritic tree. Not all of the categorization corresponds with previous descriptions; our findings suggest that some reorganization may be necessary in the accepted classification of cells in the proximal areas of the vertebrate retina. A subtle yet remarkable pattern underlies the entire structure of the catfish retina; there exists a definite gradient of size within a particular class of cells, and of configuration among the subclasses of a specific cell type. It remains to be seen if these morphological spectra bear any functional consequences. The fact that the structure of the catfish retina most closely resembles those of other phylogenetically ancient animals, such as the skate and the dogfish shark, testifies to its primitive organization; morphological and functional mechanisms discernible in this simple system may, therefore, be applicable to the retinas of higher ordered vertebrates.


2000 ◽  
Vol 17 (2) ◽  
pp. 255-262 ◽  
Author(s):  
DIANNA A. JOHNSON ◽  
STEPHEN L. MILLS ◽  
MICHAEL F. HABERECHT ◽  
STEPHEN C. MASSEY

In the mature rabbit retina, two classes of horizontal cells, A type and B type, provide lateral inhibition in the outer plexiform layer (OPL) and spatially modify the activation of bipolar cells by photoreceptors. Gap junctions connecting homologous horizontal cells determine the extent to which this inhibitory activity spreads laterally across the OPL. Little is currently known about the expression of gap junctions in horizontal cells during postnatal development or how cell–cell coupling might contribute to subsequent maturational events. We have examined the morphological attributes and coupling properties of developing A and B type horizontal cells in neonatal rabbit retina using intracellular injections of Lucifer Yellow and Neurobiotin. Prelabeling with DAPI permitted the targeting of horizontal cell bodies for intracellular injection in perfused preparations of isolated retina. A and B type horizontal cells were identifiable at birth although their dendritic field sizes had not reached adult proportions and their synaptic contacts in the OPL were minimal. Both cell types exhibited homologous dye coupling at birth. Similar to that seen in the adult, no heterologous coupling was observed, and homologous coupling among A type cells was stronger than that observed among B type cells. The spread of tracer compounds through gap junctions of morphologically immature horizontal cells suggests that ions and other small, bioactive compounds may likewise spread through coupled, horizontal networks to coordinate the subsequent maturational of emerging outer plexiform layer pathways.


1992 ◽  
Vol 67 (4) ◽  
pp. 829-840 ◽  
Author(s):  
H. G. Kim ◽  
R. F. Miller

1. Horizontal cells (HCs) of the mudpuppy (Necturus maculosus) retina were physiologically characterized with the use of intracellular recordings in a superfused, dark-adapted, retina-eyecup preparation. 2. Physiological analysis included an evaluation of rod versus cone input and a determination of the receptive field size with the use of a displaced slit of light. 3. The morphology of HCs was established through intracellular staining with horseradish peroxidase (HRP) and Lucifer yellow mixed in a single electrode. 4. Three types of horizontal cells were identified, each associated with a distinct morphology. Physiological subtypes included luminosity (L) and chromaticity (C) cells. Morphological diversities included single axon-bearing, multiple axon-bearing and, nonaxon-bearing cells. All C-type HCs lacked axons. 5. Approximately 90% of HCs encountered in this study were L-type cells, which received sign-conserving inputs from both rods and cones. These cell types contained one or more long axons that often stretched greater than 500 microns. This group was morphologically diverse, particularly with respect to variations in the number of axons, but we were unable to correlate this diversity with any unique set of physiological properties. 6. Several C-type HCs were identified (n = 8). These cells depolarized to a low-intensity, short-wavelength (SW) stimulus, whereas they hyperpolarized to high-intensity, long-wavelength stimuli. Morphologically, these cells were axonless (n = 4), with relatively small dendritic fields. 7. A third group of HCs were classified as "short wavelength preferring" HCs (n = 7). These cells responded better to a SW stimulus at all intensity levels. They were thus dissimilar to the common L-type HCs, which showed an apparent rod to cone transition as the stimulus intensity increased, suggestive of a shift from rod to cone preference. Morphologically, these cells were axonless (n = 2), but had broader dendritic fields than the C-type HCs. 8. Our observations indicate that the horizontal cell population of the mudpuppy retina is considerably more complex than previously supposed. The existence of both axon-bearing and axonless HCs, which could be correlated with L- and C-type physiology, implies that HCs may support more than one function in outer retina processing.


2000 ◽  
Vol 17 (4) ◽  
pp. 591-608 ◽  
Author(s):  
HEINZ WÄSSLE ◽  
DENNIS M. DACEY ◽  
TONI HAUN ◽  
SILKE HAVERKAMP ◽  
ULRIKE GRÜNERT ◽  
...  

To further characterize the H1 and H2 horizontal cell populations in macaque monkey retinae, cells were injected with the tracer Neurobiotin following intracellular recordings. Tracer coupling between cells of the same type revealed all H1 or H2 cells in small patches around the injected cell. The mosaics of their cell bodies and the tiling of the retina with their dendrites were analyzed. Morphological differences between the H1 and H2 cells observable in Neurobiotin-labeled patches made it possible to recognize H1 and H2 cells in retinae immunolabeled for the calcium-binding proteins parvalbumin and calbindin, and thus to study their relative spatial densities across the retina. These data, together with the intracellularly stained patches, show that H1 cells outnumber H2 cells at all eccentricities. There is, however, a change in the relative proportions of H1 and H2 cells with eccentricity: close to the fovea the ratio of H1 to H2 cells is ∼4 to 1, in midperipheral retina ∼3 to 1, and in peripheral retina ∼2 to 1. In both the Neurobiotin-stained and the immunostained retinae, about 3–5% of the H2 cells were obviously misplaced into the ganglion cell layer. Several features of the morphology of the misplaced H2 cells suggest that they represent the so-called “biplexiform ganglion cells” previously described in Golgi studies of primate retina.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Guadalupe Álvarez-Hernán ◽  
Ruth Bejarano-Escobar ◽  
Ruth Morona ◽  
Agustín González ◽  
Gervasio Martín-Partido ◽  
...  

The LIM-homeodomain transcription factor Islet1 (Isl1) has been widely used as a marker of neuronal differentiation in the developing visual system of different classes of vertebrates, including mammals, birds, reptiles, and fish. In the present study, we analyzed the spatial and temporal distribution of Isl1-immunoreactive cells duringXenopus laevisretinal development and its relation to the formation of the retinal layers, and in combination with different markers of cell differentiation. The earliest Isl1 expression appeared at St29-30 in the cell nuclei of sparse differentiating neuroblasts located in the vitreal surface of the undifferentiated retina. At St35-36, abundant Isl1-positive cells accumulated at the vitreal surface of the neuroepithelium. As development proceeded and through the postmetamorphic juveniles, Isl1 expression was identified in subpopulations of ganglion cells and in subsets of amacrine, bipolar, and horizontal cells. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different retinal cell types, and Isl1 can serve as a specific molecular marker for the study of retinal cell specification inX. laevis.


1996 ◽  
Vol 13 (4) ◽  
pp. 735-746 ◽  
Author(s):  
Daniele Sandman ◽  
Brian B. Boycott ◽  
Leo Peichl

AbstractThe morphology of horizontal cells in ox, sheep, and pig retinae as observed after Lucifer Yellow injections are described and compared with the descriptions of Golgi-stained cells by Ramón y Cajal (1893). Horizontal cells in the retinae of less domesticated species, wild pig, fallow and sika deer, mouflon, and aurochs were also examined. All these retinae have two types of horizontal cell; their morphologies are in common, although with some familial differences. Their basic appearance is as Cajal described; except in one important respect, a single axon-like process could not be identified on the external horizontal cells. It is concluded that external horizontal cells of artiodactyls correspond to the axonless (A-type) cells of other mammals. Cajal's internal horizontal cells have a single axon which contacts rods. This type corresponds to the B-type cells of other mammalian retinae. Artiodactyl A- and B-type horizontal cells differ from those of many other mammals in that the B-type dendritic tree is robust and the A-type dendritic tree is delicate. Historically, this morphological difference between orders of mammals has led to some confusion. The comparisons presented here suggest that the morphological types of primate horizontal cells can be integrated into a general mammalian classification.


1999 ◽  
Vol 16 (5) ◽  
pp. 811-818 ◽  
Author(s):  
CHENGBIAO LU ◽  
DAO-QI ZHANG ◽  
DOUGLAS G. McMAHON

Electrical coupling between H2 horizontal cell pairs isolated from the hybrid bass retina was studied using dual whole-cell, voltage-clamp technique. Voltage-dependent inactivation of junctional currents in response to steps in transjunctional voltage (Vj) over a range of ±100 mV was characterized for 89 cell pairs. Approximately one-quarter of the pairs exhibited strongly voltage-dependent junctions (>50% reduction in junctional current at ±100 mV), another quarter of the pairs exhibited voltage-independent junctional current (<5% reduction at ±100 mV), and the remainder of the pairs exhibited intermediate values for voltage inactivation. We focused on further characterizing the Vj-independent junctions of horizontal cells, which have not been described previously in detail. When Lucifer Yellow dye was included in one recording pipette, pairs exhibiting Vj-independent coupling showed no (9/12), or limited (3/12), passage of dye. Vj-independent coupling was markedly less sensitive to the modulators SNP (100–300 μM, −9% reduction in coupling) and dopamine (100–300 μM, −6%) than were Vj-dependent junctions (−45% and −44%). However, simultaneous application of both SNP and dopamine significantly reduced Vj-independent coupling (−56%). Both Vj-independent and Vj-dependent junctions were blocked by DMSO (1–2%), but Vj-independent junctions were not blocked by heptanol. Single-channel junctional conductances of Vj-independent junctions range from 112–180 pS, versus 50–60 pS for Vj-dependent junctions. The results reveal that Vj-independent coupling in a subpopulation of horizontal cells from the hybrid bass retina is mediated by cellular junctions with physiological and pharmacological characteristics distinct from those previously described in fish horizontal cells.


1992 ◽  
Vol 8 (5) ◽  
pp. 443-448 ◽  
Author(s):  
Eduarda Van Haesendonck ◽  
Luc Missotten

AbstractPeroxidase-anti-peroxidase immunocytochemistry, applied on serial semithin epoxy resin sections, was used to examine the localization of endogenous GABA in horizontal cells in the retina of a marine teleost, the dragonet (Callionymus lyra L.). The immunostaining shows that not only the external H1 cone horizontal cells label with antibodies against GABA, but also the H2 and H3 cone horizontal cells in the inner nuclear layer. The distribution of the H1 cells corresponds to that of the single cones. They are square-patterned and in the dorsal retina their density equals 20,000 cells/mm2. The estimated density of the immunostained H2 and the H3 cells in the dorsal retina is 9500 and 1300 cells/mm2, respectively. The H2 and H3 cells are not geometrically arranged, but nearest-neighbor analysis shows that these horizontal cell types do have a very regular disposition. We suggest that GABA is the likely neurotransmitter substance used by all cone horizontal cell types in teleost retina.


1979 ◽  
Vol 42 (2) ◽  
pp. 441-454 ◽  
Author(s):  
K. I. Naka ◽  
R. Y. Chan ◽  
S. Yasui

1. We define absolute sensitivity as (voltage/illuminance) and incremental sensitivity as the peak-to-peak amplitude of the first-order (Wiener) kernels. 2. Incremental sensitivity of the horizontal cells is the local slopes of the Michaelis-Menten equation and that of more proximal neurons is the Fechner slope. In a log-log plot, the former has a slope of -2, whereas the latter a slope of -1, as predicted by Williams and Gale (39). 3. During a moderate to strong steady illumination, absolute sensitivity decreases but incremental sensitivity increases. The reverse occurs during dark adaptation. 4. The presence of a steady illumination did not prevent signal transmission from horizontal to ganglion cells. 5. From these results we conclude that: adaptation in the catfish retina includes two components: a) a lateral shift of the voltage-intensity curve along the intensity axis, and b) changes in the time course of light-evoked response. We argue that the latter phenomenon is related to the presumed horizontal cell-to-receptor cell negative feedback.


1994 ◽  
Vol 11 (3) ◽  
pp. 549-560 ◽  
Author(s):  
Stephen L. Mills ◽  
Stephen C. Massey

AbstractBoth A- and B-type horizontal cells in the rabbit retina were labeled by brief in vitro incubations of the isolated retina in the blue fluorescent dye 4,6–diamino-2–phenylindole. Intracellular injection of Lucifer Yellow into the somata revealed the morphology of the individual cells. Dye-coupling with Lucifer Yellow was seen only between A-type horizontal cells. By contrast, injection of the tracer Neurobiotin showed dye-coupling between both A- and B-type horizontal cells. There also appeared to be coupling between the axon terminals of B-type horizontal cells.The extensive dye-coupling seen following injection of Neurobiotin into a single horizontal cell soma can be used to obtain population counts of each cell type. Staining of large numbers of each cell type across the retina showed that each type increased in number and declined in dendritic diameter as the visual streak was approached, such that relatively constant coverage across the retina was maintained. In the visual streak, A-type horizontal cells numbered 555 cells/mm2 and averaged 120 μm in diameter, compared to 1375 cells/mm2 and 100 μm for B-type horizontal cells. In the periphery, the A- and B-types numbered 250 cells/mm2 and 400 cells/mm2, respectively. The average diameters of the dendritic trees at these locations were 225 μm for the A-type and 175 μm for the B-type. Coverage across the retina averaged almost six for A-type horizontal cells and 8–10 for the B-type. A-type horizontal cells in the visual streak whose elliptical dendritic fields were shown by Bloomfield (1992) to correlate physiologically with orientation bias were shown to be dye-coupled to cells with symmetrical dendritic fields.


Sign in / Sign up

Export Citation Format

Share Document