visual streak
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 1)

H-INDEX

19
(FIVE YEARS 0)

2015 ◽  
Vol 77 (2) ◽  
pp. 175-179 ◽  
Author(s):  
Yasuhiro YAMAUE ◽  
Yoshinao Z. HOSAKA ◽  
Masato UEHARA

2009 ◽  
Vol 26 (2) ◽  
pp. 167-175 ◽  
Author(s):  
FERNANDO ALLAN de FARIAS ROCHA ◽  
PETER K. AHNELT ◽  
LEO PEICHL ◽  
CÉZAR A. SAITO ◽  
LUIZ CARLOS L. SILVEIRA ◽  
...  

AbstractThe presence, density distribution, and mosaic regularity of cone types were studied in the retina of the diurnal agouti,Dasyprocta aguti. Longwave-sensitive (L-) and shortwave-sensitive (S-) cones were detected by antibodies against the respective cone opsins. L- and S-cones were found to represent around 90 and 10% of the cone population, respectively. There was no evidence for L- and S-opsin coexpression in agouti cones. L-cone densities were highest, up to 14,000/mm2, along a horizontal visual streak located about 2–3 mm dorsal to the optic nerve, and the L-cone distribution showed a dorsoventral asymmetry with higher densities in ventral (about 10,000/mm2) than in dorsal (about 4000/mm2) retinal regions. This L-cone topography parallels the agouti’s ganglion cell topography. S-cones had a peak density of 1500–2000/mm2in the central retinal region but did not form a visual streak. Their distribution also showed a dorsoventral asymmetry with densities around 600/mm2in dorsal and around 1000/mm2in ventral retinal regions. The patterning of cone arrays was assessed by the density recovery profile analysis. At all eccentricities evaluated, the S-cone mosaic less efficiently packed than the L-cone mosaic. Rod densities ranged from 47,000/mm2in peripheral to 64,000/mm2in central retina, and rod:cone ratios were 4:1–9:1. The comparatively low rod density and high cone proportion appear well adapted to the diurnal lifestyle of the agouti.


2008 ◽  
Vol 86 (7) ◽  
pp. 735-743 ◽  
Author(s):  
G. J. D’Angelo ◽  
A. Glasser ◽  
M. Wendt ◽  
G. A. Williams ◽  
D. A. Osborn ◽  
...  

To gain knowledge of visual specializations influencing the behavior of white-tailed deer ( Odocoileus virginianus (Zimmermann, 1780)), we examined gross eye characteristics, structural organization of the retina, and the density and distribution of cone photoreceptors. White-tailed deer possess ocular features similar to other ungulates including a horizontal slit pupil, reflective tapetum lucidum, typical retinal structure, and medium wavelength sensitive cone photoreceptors concentrated in a horizontal visual streak. The tapetum was found to cover the superior portion of the eye and overlapped the horizontal visual streak. Comparisons between fawns and adults did not reveal any differences in retinal thickness, retinal nuclei counts, or cone photoreceptor counts. While M-cones had increased density in the visual streak, S-cones were distributed evenly across the entire retina. Schematic eye calculations of a 0.5-year-old deer indicated a hyperopic eye (+7.96) with a F/# ranging from 5.55 to 1.39 for pupil diameters of 3 to 12 mm. As expected for a crepuscularly active prey species, the visual system of white-tailed deer is specialized for sensitivity in low-light conditions and detection of predators.


2006 ◽  
Vol 23 (6) ◽  
pp. 879-886 ◽  
Author(s):  
FRANCISCO GILBERTO OLIVEIRA ◽  
JOÃO PAULO COIMBRA ◽  
ELIZABETH SUMI YAMADA ◽  
LUCIANO FOGAÇA DE ASSIS MONTAG ◽  
FRANCYLLENA L. NASCIMENTO ◽  
...  

Fish of the genus Anableps (Anablepidae, Cyprinodontiformes) have eyes that are adapted for simultaneous aerial and aquatic vision. In this study we investigate some of the corresponding retinal specializations of the adult Anableps anableps eye using retinal transverse sections and wholemounts. The linear dimensions of the retina were found to be asymmetric with a greater representation of the dorsal compared to the ventral visual field. The total number of neurons in the ganglion cell layer of the ventral hemiretina was on average 3.6 times greater than the values obtained in the dorsal hemiretina. Isodensity contour maps revealed a prominent horizontal visual streak in the ventral hemiretina with an average peak cell density of 18,286 cells/mm2. A second less-well-developed horizontal visual streak was also observed in the dorsal hemiretina. A sub-population of large cells with soma areas between 74 and 188 μm2 was identified and found to be distributed evenly across both hemiretinas. Together, these results show that the sampling gain of the ventral retina is significantly greater than the dorsal segment, that retinal specializations important for mediating acute vision are present in the parts of the visual field immediately above and below the surface of the water, and that visual functions related with the large ganglion cells require more even sampling across the visual field. The relevance of these retinal specializations to the feeding and other behavioral strategies adopted by Anableps is discussed.


2006 ◽  
Vol 23 (6) ◽  
pp. 931-939 ◽  
Author(s):  
YEN-HONG KAO ◽  
PETER STERLING

The ganglion cell layer of mammalian retina contains numerous amacrine cells. Many belong to one type, the cholinergic starburst cell, but the other types have not been systematically identified. Using a new method to target sparsely represented cell types, we filled about 200 amacrine neurons in the ganglion cell layer of the guinea pig visual streak and identified 11 types. Ten of these resemble types identified in other species with somas in the inner nuclear layer, but one type has not been previously reported. Most of the types and nearly all the injected cells (95%) arborized low in the synaptic layer where they would co-stratify with various classes of ON ganglion cell. The displaced somas (7% of all amacrine cells) thus represent a heterogeneous pool, which are relatively accessible for study of their interactions with ON ganglion cells.


2005 ◽  
Vol 22 (6) ◽  
pp. 707-720 ◽  
Author(s):  
S.M.A. DE LIMA ◽  
P.K. AHNELT ◽  
T.O. CARVALHO ◽  
J.S. SILVEIRA ◽  
F.A.F. ROCHA ◽  
...  

The morphology and distribution of normally placed and displaced A horizontal cells were studied in the retina of a diurnal hystricomorph rodent, the agouti Dasyprocta aguti. Cells were labeled with anti-calbindin immunocytochemistry. Dendritic-field size reaches a minimum in the visual streak, of about 9000 μm2, and increases toward the retinal periphery both in the dorsal and ventral regions. There is a dorsoventral asymmetry, with dorsal cells being larger than ventral cells at equal distances from the streak. The peak value for cell density of 281 ± 28 cells/mm2 occurs in the center of the visual streak, decreasing toward the dorsal and ventral retinal periphery, paralleling the increase in dendritic-field size. Along the visual streak, the decline in cell density is less pronounced, remaining between 100–200 cells/mm2 in the temporal and nasal periphery. Displaced horizontal cells are rare and occur in the retinal periphery. They tend to be smaller than normally placed horizontal cells in the ventral region, whilst no systematic difference was observed between the two cell groups in the dorsal region. Mosaic regularity was studied using nearest-neighbor analysis and the Ripley function. When mosaic regularity was determined removing the displaced horizontal cells, there was a slight increase in the conformity ratio, but the bivariate Ripley function indicated some repulsive dependence between the two mosaics. Both results were near the level of significance. A similar analysis performed in the capybara retina, a closely related hystricomorph rodent bearing a higher density of displaced horizontal cells than found in the agouti, suggested spatial independence between the two mosaics, normally placed versus displaced horizontal cells.


2004 ◽  
Vol 21 (2) ◽  
pp. 145-155 ◽  
Author(s):  
LAYNE L. WRIGHT ◽  
DAVID I. VANEY

The type 1 polyaxonal (PA1) cell is a distinct type of axon-bearing amacrine cell whose soma commonly occupies an interstitial position in the inner plexiform layer; the proximal branches of the sparse dendritic tree produce 1–4 axon-like processes, which form an extensive axonal arbor that is concentric with the smaller dendritic tree (Dacey, 1989; Famiglietti, 1992a,b). In this study, intracellular injections of Neurobiotin have revealed the complete dendritic and axonal morphology of the PA1 cells in the rabbit retina, as well as labeling the local array of PA1 cells through homologous tracer coupling. The dendritic-field area of the PA1 cells increased from a minimum of 0.15 mm2 (0.44-mm equivalent diameter) on the visual streak to a maximum of 0.67 mm2 (0.92-mm diameter) in the far periphery; the axonal-field area also showed a 3-fold variation across the retina, ranging from 3.1 mm2 (2.0-mm diameter) to 10.2 mm2 (3.6-mm diameter). The increase in dendritic- and axonal-field size was accompanied by a reduction in cell density, from 60 cells/mm2 in the visual streak to 20 cells/mm2 in the far periphery, so that the PA1 cells showed a 12 times overlap of their dendritic fields across the retina and a 200–300 times overlap of their axonal fields. Consequently, the axonal plexus was much denser than the dendritic plexus, with each square millimeter of retina containing ∼100 mm of dendrites and ∼1000 mm of axonal processes. The strong homologous tracer coupling revealed that ∼45% of the PA1 somata were located in the inner nuclear layer, ∼50% in the inner plexiform layer, and ∼5% in the ganglion cell layer. In addition, the Neurobiotin-injected PA1 cells sometimes showed clear heterologous tracer coupling to a regular array of small ganglion cells, which were present at half the density of the PA1 cells. The PA1 cells were also shown to contain elevated levels of γ-aminobutyric acid (GABA), like other axon-bearing amacrine cells.


2004 ◽  
Vol 286 (1) ◽  
pp. H419-H423 ◽  
Author(s):  
Dao-Yi Yu ◽  
Stephen J. Cringle

The oxygen requirements of different retinal layers are of interest in understanding the vulnerability of the retina to hypoxic damage in retinal diseases with an ischemic component. Here, we report the first measurements of retinal oxygen consumption in the visual streak of the rabbit retina, the region with the highest density of retinal neurons, and compare it with that in the less-specialized region of the retina underlying the vascularized portion of the rabbit retina. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth in anesthetized animals. Measurements were performed in the region of the retina containing overlying retinal vessels and in the center of the visual streak. Established mathematical analyses of the intraretinal oxygen distribution were used to quantify the rate of oxygen consumption in the inner and outer retina and the relative oxygen contributions from the choroidal and vitreal sides. Outer retinal oxygen consumption was higher in the visual streak than in the vascularized area (means ± SE, 284 ± 20 vs. 210 ± 23 nl O2·min–1·cm–2, P = 0.026, n = 10). However, inner retinal oxygen consumption in the visual streak was significantly lower than in the vascular area (57 ± 4.3 vs. 146 ± 12 nl O2·min–1·cm–2, P < 0.001). We conclude that despite the higher processing requirements of the inner retina in the visual streak, it has a significantly lower oxygen consumption rate than the inner retina underlying the retinal vasculature. This suggests that the oxygen uptake of the inner retina is regulated to a large degree by the available oxygen supply rather than the processing requirements of the inner retina alone.


1998 ◽  
Vol 15 (4) ◽  
pp. 743-753 ◽  
Author(s):  
MADELEINE A. JOHNSON ◽  
NOGA VARDI

Mammalian horizontal cells are believed to be GABAergic because, in most species, they contain both GABA and glutamic acid decarboxylase (GAD), and their terminals are presynaptic to GABA receptors. In adult rabbit, however, GABA and GAD immunoreactivity have not been consistently demonstrated in horizontal cells, casting doubts on the assumption that they too are GABAergic. Here we demonstrate that all rabbit horizontal cell terminals—dendritic terminals of type A, and both dendritic and axonal terminals of type B—immunostain for one isoform of GAD, GAD67. In addition, we show that type A horizontal cell somas and primary dendrites in the visual streak (identified by their immunoreactivity to calbindin) are immunoreactive for the other GAD isoform, GAD65. Double-labeling experiments for GAD65 and GABA reveal that every cell that stains for GAD65 also stains for GABA. The presence of GAD67 in horizontal cell terminals suggests that rabbit horizontal cells are GABAergic. The segregation of the two GAD isoforms to different cell compartments suggests that GABA is released at different sites, possibly by two different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document