Evoked responses to sinusoidal gratings in the pigeon optic tectum

1989 ◽  
Vol 2 (2) ◽  
pp. 137-145 ◽  
Author(s):  
V. Porciatti ◽  
R. Alesci ◽  
P. Bagnoli

AbstractTectal evoked potentials (TEPs) in response to sinusoidal gratings of different contrast, spatial and temporal frequency have been recorded from the tectal surface of the pigeon. Responses have been digitally filtered in order to isolate transient oscillatory (fast) potentials (50–150 Hz), transient slow potentials (1–50 Hz), and the steady-state second-harmonic component (16.6 Hz). Transient slow potentials, as well as the steady-state second-harmonic component, are band-pass spatially tuned with a maximum at 0.5 cycles/deg and attenuation at higher and lower spatial frequencies. The high spatial frequency cutoff is 4–5 cycles/deg. Both transient slow potentials and the steady-state second-harmonic component increase in amplitude as a function of log contrast and saturate at about 20% contrast. The contrast sensitivity, as determined by extrapolating TEP amplitude to 0 V is 0.1–0.2%. These characteristics of spatial-frequency selectivity and contrast sensitivity are similar to those reported for single tectal cells. Unlike slow potentials, oscillatory potentials are not band-pass spatially tuned. In addition, their contrast response function does not saturate at moderate contrast. These differences suggest that tectal evoked slow and fast potentials reflect the activity of different neuronal mechanisms.

2001 ◽  
Vol 85 (4) ◽  
pp. 1512-1521 ◽  
Author(s):  
N.S.C. Price ◽  
M. R. Ibbotson

The visual response properties of nondirectional wide-field sensitive neurons in the wallaby pretectum are described. These neurons are called scintillation detectors (SD-neurons) because they respond vigorously to rapid, high contrast visual changes in any part of their receptive fields. SD-neurons are most densely located within a 1- to 2-mm radius from the nucleus of the optic tract, interspersed with direction-selective retinal slip cells. Receptive fields are monocular and cover large areas of the contralateral visual field (30–120°). Response sizes are equal for motion in all directions, and spontaneous activities are similar for all orientations of static sine-wave gratings. Response magnitude increases near linearly with increasing stimulus diameter and contrast. The mean response latency for wide-field, high-contrast motion stimulation was 43.4 ± 9.4 ms (mean ± SD, n = 28). The optimum visual stimuli for SD-neurons are wide-field, low spatial frequency (<0.2 cpd) scenes moving at high velocities (75–500°/s). These properties match the visual input during saccades, indicating optimal sensitivity to rapid eye movements. Cells respond to brightness increments and decrements, suggesting inputs from on and off channels. Stimulation with high-speed, low spatial frequency gratings produces oscillatory responses at the input temporal frequency. Conversely, high spatial frequency gratings give oscillations predominantly at the second harmonic of the temporal frequency. Contrast reversing sine-wave gratings elicit transient, phase-independent responses. These responses match the properties of Y retinal ganglion cells, suggesting that they provide inputs to SD-neurons. We discuss the possible role of SD-neurons in suppressing ocular following during saccades and in the blink or saccade-locked modulation of lateral geniculate nucleus activity to control retino-cortical information flow.


1986 ◽  
Vol 56 (3) ◽  
pp. 747-768 ◽  
Author(s):  
R. F. Hess ◽  
C. L. Baker ◽  
E. Zrenner ◽  
J. Schwarzer

We compared the electroretinogram (ERG) evoked by pattern and uniform field stimulation using steady-state analysis in cat, monkey, and human. Evidence is provided that the pattern-evoked ERG is different in cat and primate. In primate it exhibits a resonance at 8 Hz, a spatial band-pass characteristic, contrast linearity, and no scotopic component. None of these properties are seen in the response to 8-Hz modulation in cat. The ERG evoked by a sinusoidally modulated uniform field of light is composed of a fundamental and a second harmonic component. Although the properties of the fundamental response are similar in cat and primate, the second harmonic response exhibits important differences in its temporal response and luminance dependence. The correspondence between the properties of the pattern-evoked ERG and those of the second harmonic component of the uniform field stimulus in primates suggests a common generator that is different from that of the fundamental response to uniform field stimulation. These differences in the properties of the pattern ERG in cat and primate may suggest either a different generator in cat or one with substantially different properties. This should be taken into account in animal models for the generators of the human pattern ERG response.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhen Ren ◽  
Jiawei Zhou ◽  
Zhimo Yao ◽  
Zhengchun Wang ◽  
Nini Yuan ◽  
...  

Abstract It is well known that, in humans, contrast sensitivity training at high spatial frequency (SF) not only leads to contrast sensitivity improvement, but also results in an improvement in visual acuity as assessed with gratings (direct effect) or letters (transfer effect). However, the underlying neural mechanisms of this high spatial frequency training improvement remain to be elucidated. In the present study, we examined four properties of neurons in primary visual cortex (area 17) of adult cats that exhibited significantly improved acuity after contrast sensitivity training with a high spatial frequency grating and those of untrained control cats. We found no difference in neuronal contrast sensitivity or tuning width (Width) between the trained and untrained cats. However, the trained cats showed a displacement of the cells’ optimal spatial frequency (OSF) to higher spatial frequencies as well as a larger neuronal signal-to-noise ratio (SNR). Furthermore, both the neuronal differences in OSF and SNR were significantly correlated with the improvement of acuity measured behaviorally. These results suggest that striate neurons might mediate the perceptual learning-induced improvement for high spatial frequency stimuli by an alteration in their spatial frequency representation and by an increased SNR.


1986 ◽  
Vol 56 (4) ◽  
pp. 969-986 ◽  
Author(s):  
M. C. Morrone ◽  
M. Di Stefano ◽  
D. C. Burr

Neurons in the posteromedial lateral suprasylvian cortex (PMLS) of cats were recorded extracellularly to investigate their response to stimulation by bars and by sinusoidal gratings. Two general types of cells were identified: those that modulated in synchrony with the passage of drifting bars and gratings and those that responded with an unmodulated increase in discharge. Both types responded to contrast reversed gratings with a modulation of activity: the cells that modulated to drifting gratings modulated to the first harmonic of contrast reversed gratings (at appropriate spatial phase and frequency), whereas those that did not modulate to drifting gratings always modulated to the second harmonic of contrast reversed gratings. No cell had a clear null point. Nearly all cells were selective for spatial frequency. The preferred frequency ranged from 0.1 to 1 cycles per degree (cpd), and selectivity bandwidths (full width at half height) were around two octaves. Preferred spatial frequency was not correlated with receptive field size, but bandwidth and receptive field size were positively correlated. Preferred spatial frequency decreased with eccentricity, at about 0.05 octaves/deg. The response of all cells increased as a function of grating contrast up to a saturation level. The contrast threshold for response to a grating of optimal parameters was approximately 1% for most cells and the saturation contrast approximately 10%. The contrast gain was approximately 25 spikes/s per log unit of contrast. All cells were tuned for temporal frequency, preferring frequencies from approximately 3 to 10 Hz, with a selectivity bandwidth approximately 2 octaves. For some cells, the spatial selectivity did not depend on the temporal frequency and vice versa. Others were spatiotemporally coupled, with the preferred temporal frequency being lower at high than at low spatial frequencies, and the preferred spatial frequency lower at high than at low temporal frequencies. Previous results showing broad velocity tuning to a bar were replicated and found to be predictable from the combined spatial and temporal tuning of PMLS cells and the Fourier spectrum of a bar. Preferred temporal frequency steadily decreased with eccentricity, at 0.025 octaves/deg. The results for PMLS cells are compared with those of other visual areas. Acuity and spatial preference and selectivity bandwidth is comparable to all areas except area 17, where they are a factor of about two higher. Temporal selectivity in PMLS is as fine as observed in other areas. The possibility that PMLS cells may be involved with motion detection and detection of motion in depth is discussed.


Author(s):  
Peter Cawley

Abstract Permanently installed SHM systems are now a viable alternative to traditional periodic inspection (NDT). However, their industrial use is limited and this paper reviews the steps required in developing practical SHM systems. The transducers used in SHM are fixed in location, whereas in NDT they are generally scanned. The aim is to reach similar performance with high temporal frequency, low spatial frequency SHM data to that achievable with conventional high spatial frequency, low temporal frequency NDT inspections. It is shown that this can be done via change tracking algorithms such as the Generalized Likelihood Ratio (GLR) but this depends on the input data being normally distributed, which can only be achieved if signal changes due to variations in the operating conditions are satisfactorily compensated; there has been much recent progress on this topic and this is reviewed. Since SHM systems can generate large volumes of data, it is essential to convert the data to actionable information, and this step must be addressed in SHM system design. It is also essential to validate the performance of installed SHM systems, and a methodology analogous to the model assisted POD (MAPOD) scheme used in NDT has been proposed. This uses measurements obtained from the SHM system installed on a typical undamaged structure to capture signal changes due to environmental and other effects, and to superpose the signal due to damage growth obtained from finite element predictions. There is a substantial research agenda to support the wider adoption of SHM and this is discussed.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 362-362
Author(s):  
R J Snowden

Peripheral vision has been modelled as a coarser version of foveal vision. Thus visual behaviour elicited by, say, a 2 cycles deg−1 grating imaged foveally would be reproduced in the periphery by a lower spatial frequency (say 1 cycle deg−1). Tuning for orientation is broader at a low than high spatial frequency (Snowden, 1992 Vision Research32 1965 – 1974). Taken together this leads to the surprising prediction that, given a particular spatial frequency, tuning for orientation is narrower for peripheral viewing! In this study it has also been found that orientation tuning broadens with increasing temporal frequency, but the opposite relationship has been reported for peripheral vision (Sharpe and Tolhurst, 1973 Vision Research13 2103 – 2112). Orientation bandwidths were measured by the method of selective adaptation following the procedures and analysis techniques described by Snowden (1991 Proceedings of the Royal Society of London, Series B246 53 – 59). The results show that orientation bandwidths did indeed narrow as a stimulus was imaged more peripherally, so that its bandwidth in the peripheral retina could be half that of the fovea. However, at a greater eccentricity, bandwidths broadened once more. The results were not influenced by the contrast of the adaptation pattern eliminating visibility as a possible explanation. Increasing temporal frequency broadened orientation bandwidth at all eccentricities.


1990 ◽  
Vol 5 (04) ◽  
pp. 321-346 ◽  
Author(s):  
Peter H. Schiller ◽  
Nikos K. Logothetis ◽  
Eliot R. Charles

AbstractThe functions of the primate color-opponent and broad-band channels were assessed by examining the visual capacities of rhesus monkeys following selective lesions of parvocellular and magnocellular lateral geniculate nucleus, which respectively relay these two channels to the cortex. Parvocellular lesions impaired color vision, high spatial-frequency form vision, and fine stereopsis. Magnocellular lesions impaired high temporal- frequency flicker and motion perception but produced no deficits in stereopsis. Low spatial-frequency form vision, stereopsis, and brightness perception were unaffected by either lesion. Much as the rods and cones of the retina can be thought of as extending the range of vision in the intensity domain, we propose that the color-opponent channel extends visual capacities in the wavelength and spatial-frequency domains whereas the broad-band channel extends them in the temporal domain.


2005 ◽  
Vol 55 (3) ◽  
pp. 245-258 ◽  
Author(s):  
◽  
◽  
◽  

AbstractFlickering light can cause adverse effects in some humans, as can rhythmic spatial patterns of particular frequencies. We investigated whether birds react to the temporal frequency of standard 100 Hz fluorescent lamps and the spatial frequency of the visual surround in the manner predicted by the human literature, by examining their effects on the preferences, behaviour and plasma corticosterone of European starlings (Sturnus vulgaris). We predicted that high frequency lighting (> 30 kHz) and a relatively low spatial frequency on the walls of their cages (0.1 cycle cm−1) would be less aversive than low frequency lighting (100 Hz) and a relatively high spatial frequency (2.5 cycle cm−1). Birds had strong preferences for both temporal and spatial frequencies. These preferences did not always fit with predictions, although there was evidence that 100 Hz was more stressful than 30 kHz lighting, as birds were less active and basal corticosterone levels were higher under 100 Hz lighting. Our chosen spatial frequencies had no overall significant effect on corticosterone levels. Although there are clearly effects of, and interactions between, the frequency of the light and the visual surround on the behaviour and physiology of birds, the pattern of results is not straightforward.


2007 ◽  
Vol 24 (3) ◽  
pp. 319-331 ◽  
Author(s):  
D.P.M. NORTHMORE ◽  
D.-J. OH ◽  
M.A. CELENZA

Spatial vision was studied in the bluegill sunfish, Lepomis macrochirus (9.5–14 cm standard length) to assess the limitations imposed by the optics of the eye, the retinal receptor spacing and the retinotectal projection during regeneration. Examination of images formed by the dioptric elements of the eye showed that spatial frequencies up to 29 c/° could be imaged on the retina. Cone spacing was measured in the retina of fresh, intact eyes. The spacing of rows of double cones predicted 3.4 c/° as the cutoff spatial frequency; the spacing between rows of single and double cones predicted 6.7 c/°. Contrast sensitivity functions were obtained psychophysically in normals and fish with one regenerating optic nerve. Fish were trained to orient to gratings (mean luminance = 25 cd/m2) presented to either eye. In normals, contrast sensitivity functions were similar in shape and bandwidth to those of other species, peaking at 0.4 c/° with a minimum contrast threshold of 0.03 and a cutoff at about 5 c/°, which was within the range predicted by cone spacing. Given that the optical cutoff frequency exceeds that predicted by cone spacing, it is possible that gratings could be detected by aliasing with the bluegill's regular cone mosaic. However, tests with high contrast gratings up to 15 c/° found no evidence of such detection. After crushing one optic nerve in three trained sunfish, recovery of visual avoidance, dorsal light reflex and orienting to gratings, were monitored over 315 days. At 64–69 days postcrush, responses to gratings reappeared, and within 2–5 days contrast sensitivity at low (0.15 c/°) and medium (1.0 c/°) spatial frequencies had returned to normal. At a high spatial frequency (2.93 c/°) recovery was much slower, and complete only in one fish.


Perception ◽  
1975 ◽  
Vol 4 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Bruno G Breitmeyer

The threshold detectability of a briefly presented target stimulus consisting of a vertical sinusoidal grating was affected not only by the spatial frequency content of an equally briefly presented, two-octave-wide masking noise, but also by the time interval separating the onsets of the target and its mask. Over a range of stimulus onset asynchronies, in which the mask onset either preceded, coincided with, or followed the target onset, a mask with a low spatial frequency content had its greatest masking effect on a high spatial frequency target grating when the mask followed the target by 120–180 ms. When the mask had a high spatial frequency content and the target was of low spatial frequency, or when the target was entered on the mask frequency band, optimal masking effects occurred when the onsets of the mask and target coincided. The results are discussed in relation to previous masking studies, particuarly those in which U-shaped backward pattern masking functions are obtained.


Sign in / Sign up

Export Citation Format

Share Document