Deep-sea and pelagic rod visual pigments identified in the mysticete whales

2012 ◽  
Vol 29 (2) ◽  
pp. 95-103 ◽  
Author(s):  
NICOLE BISCHOFF ◽  
BENJAMIN NICKLE ◽  
THOMAS W. CRONIN ◽  
STEPHANI VELASQUEZ ◽  
JEFFRY I. FASICK

AbstractOur current understanding of the spectral sensitivities of the mysticete whale rod-based visual pigments is based on two species, the gray whale (Eschrichtius robustus) and the humpback whale (Megaptera novaeangliae) possessing absorbance maxima determined from difference spectra to be 492 and 497 nm, respectively. These absorbance maxima values are blueshifted relative to those from typical terrestrial mammals (≈500 nm) but are redshifted when compared to those identified in the odontocetes (479–484 nm). Although these mysticete species represent two of the four mysticete families, they do not fully represent the mysticete whales in terms of foraging strategy and underwater photic environments where foraging occurs. In order to better understand the spectral sensitivities of the mysticete whale rod visual pigments, we have examined the rod opsin genes from 11 mysticete species and their associated amino acid substitutions. Based on the amino acids occurring at positions 83, 292, and 299 along with the directly determined dark spectra from expressed odontocete and mysticete rod visual pigments, we have determined that the majority of mysticete whales possess deep-sea and pelagic like rod visual pigments with absorbance maxima between 479 and 484 nm. Finally, we have defined the five amino acid substitution events that determine the resulting absorbance spectra and associated absorbance maxima for the mysticete whale rod visual pigments examined here.

2000 ◽  
Vol 17 (5) ◽  
pp. 781-788 ◽  
Author(s):  
JEFFRY I. FASICK ◽  
PHYLLIS R. ROBINSON

It has been observed that deep-foraging marine mammals have visual pigments that are blue shifted in terms of their wavelength of maximal absorbance (λmax) when compared to analogous pigments from terrestrial mammals. The mechanisms underlying the spectral tuning of two of these blue-shifted pigments have recently been elucidated and depend on three amino acid substitutions (83Asn, 292Ser, and 299Ser) in dolphin rhodopsin, but only one amino acid substitution (308Ser) in the dolphin long-wavelength-sensitive pigment. The objective of this study was to investigate the molecular basis for changes in the spectral sensitivity of rod visual pigments from seven distantly related marine mammals. The results show a relationship between blue-shifted rhodopsins (λmax ≤ 490 nm), deep-diving foraging behavior, and the substitutions 83Asn and 292Ser. Species that forage primarily near the surface in coastal habitats have a rhodopsin with a λmax similar to that of terrestrial mammals (500 nm) and possess the substitutions 83Asp and 292Ala, identical to rhodopsins from terrestrial mammals.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1839-1850 ◽  
Author(s):  
Shoji Kawamura ◽  
Nathan S Blow ◽  
Shozo Yokoyama

AbstractWe isolated five classes of retinal opsin genes rh1Cl, rh2Cl, sws1Cl, sws2Cl, and lwsCl from the pigeon; these encode RH1Cl, RH2Cl, SWS1Cl, SWS2Cl, and LWSCl opsins, respectively. Upon binding to 11-cis-retinal, these opsins regenerate the corresponding photosensitive molecules, visual pigments. The absorbance spectra of visual pigments have a broad bell shape with the peak, being called λmax. Previously, the SWS1Cl opsin cDNA was isolated from the pigeon retinal RNA, expressed in cultured COS1 cells, reconstituted with 11-cis-retinal, and the λmax of the resulting SWS1Cl pigment was shown to be 393 nm. In this article, using the same methods, the λmax values of RH1Cl, RH2Cl, SWS2Cl, and LWSCl pigments were determined to be 502, 503, 448, and 559 nm, respectively. The pigeon is also known for its UV vision, detecting light at 320–380 nm. Being the only pigments that absorb light below 400 nm, the SWS1Cl pigments must mediate its UV vision. We also determined that a nonretinal PCl pigment in the pineal gland of the pigeon has a λmax value at 481 nm.


1992 ◽  
Vol 68 (06) ◽  
pp. 672-677 ◽  
Author(s):  
Hitoshi Yahara ◽  
Keiji Matsumoto ◽  
Hiroyuki Maruyama ◽  
Tetsuya Nagaoka ◽  
Yasuhiro Ikenaka ◽  
...  

SummaryTissue-type plasminogen activator (t-PA) is a fibrin-specific agent which has been used to treat acute myocardial infarction. In an attempt to clarify the determinants for its rapid clearance in vivo and high affinity for fibrin clots, we produced five variants containing amino acid substitutions in the finger domain, at amino acid residues 7–9, 10–14, 15–19, 28–33, and 37–42. All the variants had a prolonged half-life and a decreased affinity for fibrin of various degrees. The 37–42 variant demonstrated about a 6-fold longer half-life with a lower affinity for fibrin. Human plasma clot lysis assay estimated the fibrinolytic activity of the 37–42 variant to be 1.4-fold less effective than that of the wild-type rt-PA. In a rabbit jugular vein clot lysis model, doses of 1.0 and 0.15 mg/kg were required for about 70% lysis in the wild-type and 37–42 variant, respectively. Fibrinogen was degraded only when the wild-type rt-PA was administered at a dose of 1.0 mg/kg. These findings suggest that the 37–42 variant can be employed at a lower dosage and that it is a more fibrin-specific thrombolytic agent than the wild-type rt-PA.


Sign in / Sign up

Export Citation Format

Share Document