An analysis of the limnology and sedimentary diatom flora of fourteen lakes and ponds from the Windmill Islands, East Antarctica

2001 ◽  
Vol 13 (4) ◽  
pp. 410-419 ◽  
Author(s):  
D. Roberts ◽  
A. McMinn ◽  
N. Johnston ◽  
D.B. Gore ◽  
M. Melles ◽  
...  

The limnology and sedimentary diatom flora of fourteen lakes and ponds from the Windmill Islands, East Antarctica, is presented. Saline lakes, saline ponds and freshwater ponds are represented in this dataset. The Windmill Island lake diatom flora represents an intermediate floral assemblage between that of the freshwater lakes of the Larsemann Hills and the saline lakes of Vestfold Hills, East Antarctica. Variations within this assemblage are related to water chemistry variables in the Windmill Island lakes. In particular, a lakewater salinity/phosphate gradient can explain the variation observed in the sedimentary diatom flora of the lakes and ponds included in this study.

1996 ◽  
Vol 8 (4) ◽  
pp. 331-341 ◽  
Author(s):  
D. Roberts ◽  
A. McMinn

The relationship between surface sediment diatom assemblages and measured limnological variables in 33 coastal Antarctic lakes was examined by constructing a diatom-water chemistry dataset. Canonical correspondence analysis revealed that salinity and silicate each explain significant amounts of variation in the distribution and abundance of the surface sediment diatom taxa. Salinity has the strongest influence, revealing its value for limnological inference models in this coastal Antarctic region.


2021 ◽  
Author(s):  
Laxmi Kant Bhardwaj ◽  
Abhishek Chauhan ◽  
Tanu Jindal

Abstract Purpose: More than 150 lakes on different peninsulas and islands are situated in the Larsemann Hills. The Larsemann Hills are an ice-free area and are located halfway between the Vestfold Hills and the Amery Ice Shelf on the south-eastern coast of Prydz Bay, Princess Elizabeth Land, East Antarctica. Antarctic lakes water is being polluted due to anthropogenic activities caused by various research activities and tourism. Methods: During 34th Indian Scientific Expedition to Antarctica (ISEA) in 2014 to 2015, twenty lake water samples in triplicates were collected from the Broknes & Grovnes peninsula. Coliform and faecal coliform bacteria were analyzed in these samples. Results: Out of twenty, eleven lake water samples were found to be contaminated with coliform bacteria. However, faecal coliform bacteria were absent in all the lake water samples. Coliforms are found in the lakes of Broknes peninsula (P2 Lake & P3 Lake) and Grovnes peninsula (L1C NG, L1D NG, L1E NG, L7 NG, L7A NG, L7B NG, L2 SG, L4 SG & L5 SG). Conclusion: The present study confirms the presence of coliform bacteria in the lakes of East Antarctica which indicates an alarming situation and needs to be investigated further.


2003 ◽  
Vol 46 (1) ◽  
Author(s):  
H. Cremer ◽  
D. Roberts ◽  
A. McMinn ◽  
D. Gore ◽  
M. Melles

2005 ◽  
Vol 63 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Elie Verleyen ◽  
Dominic A. Hodgson ◽  
Glenn A. Milne ◽  
Koen Sabbe ◽  
Wim Vyverman

We present a relative sea-level (RSL) history, constrained by AMS radiocarbon-dated marine–freshwater transitions in isolation basins from a site adjacent to the Lambert Glacier, East Antarctica. The RSL data suggest an initial ice retreat between c. 15,370 and 12,660 cal yr B.P Within this period, meltwater pulse IA (mwp IA, between c. 14,600–14,200 and 14,100–13,700 cal yr B.P.) occurred; an exceptionally large ice melting event, inferred from far-field sea-level records. The RSL curve shows a pronounced highstand of approximately 8 m between c. 7570–7270 and 7250–6950 cal yr B.P. that is consistent with the timing of the RSL highstand in the nearby Vestfold Hills. This is followed by a fall in RSL to the present. In contrast to previous findings, the isolation of the lakes in the Larsemann Hills postdates the isolation of lakes with similar sill heights in the Vestfold Hills. An increase in RSL fall during the late Holocene may record a decline in the rate of isostatic uplift in the Larsemann Hills between c. 7250–6950 and 2847–2509 cal yr B.P., that occurred in response to a documented mid-Holocene glacier readvance followed by a late-Holocene retreat.


2003 ◽  
Vol 15 (2) ◽  
pp. 227-248 ◽  
Author(s):  
KOEN SABBE ◽  
E. VERLEYEN ◽  
D.A. HODGSON ◽  
K. VANHOUTTE ◽  
W. VYVERMAN

A floristic and taxonomic survey was made of the diatom communities of sediments and microbial mats in 66 freshwater and saline lakes and pools in the Larsemann Hills, Rauer Islands and Bølingen Islands (continental eastern Antarctica). A total of 31 taxa were distinguished, 10 of which could not be identified to species (nine) or even generic (one) level, either because they have most probably not yet been described or because they belong to species complexes that are in need of revision. Four new combinations are proposed; three species are reported for the first time from continental Antarctica, while another three are confirmed for eastern Antarctica for the first time. Analysis of literature data on Antarctic lacustrine diatoms shows that taxonomic practice has a profound influence on the assessment of distribution patterns. Force-fitting of European and North American names to Antarctic taxa and erroneous identifications have contributed to an underestimation of endemism in the diatom flora of Antarctic inland waters. In addition, changing concepts on species boundaries during the last decade influence the interpretation of biogeographic patterns. The application of a more fine grained taxonomy will almost certainly reveal a higher degree of endemism in Antarctica, and especially continental Antarctica. The present case study shows that in the Larsemann Hills Antarctic endemics account for about 40% of all freshwater and brackish taxa, while the biogeographic distribution of about 26% is unknown, mainly due to their uncertain taxonomic identity. This contradicts the view that cosmopolitanism prevails in Antarctic diatoms.


Author(s):  
Steven K. Spreitzer ◽  
Jesse B. Walters ◽  
Alicia Cruz‐Uribe ◽  
Michael L. Williams ◽  
Martin G. Yates ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document