continental antarctica
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 21)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
pp. 108-131
Author(s):  
Xueping Li

In the name of environmental protection, the Antarctic Treaty Consultative Meeting seems to have borrowed the paradigm of international trusteeship of the United Nations for managing the Antarctic land-based protected areas. By comparing and analysing the critical questions highly concerned, this paper offers preliminary thoughts on the development and refinement of the conception of land-based protected areas as a déjà vu system of international trusteeship and its surrounding legal applications and implications in continental Antarctica, and challenges the direction followed by this system in protecting Antarctic intrinsic values in legal discourse.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Wagner ◽  
Georg Brunauer ◽  
Arne C. Bathke ◽  
S. Craig Cary ◽  
Roman Fuchs ◽  
...  

AbstractLecideoid lichens as dominant vegetation-forming organisms in the climatically harsh areas of the southern part of continental Antarctica show clear preferences in relation to environmental conditions (i.e. macroclimate). 306 lichen samples were included in the study, collected along the Ross Sea coast (78°S–85.5°S) at six climatically different sites. The species compositions as well as the associations of their two dominant symbiotic partners (myco- and photobiont) were set in context with environmental conditions along the latitudinal gradient. Diversity values were nonlinear with respect to latitude, with the highest alpha diversity in the milder areas of the McMurdo Dry Valleys (78°S) and the most southern areas (Durham Point, 85.5°S; Garden Spur, 84.5°S), and lowest in the especially arid and cold Darwin Area (~ 79.8°S). Furthermore, the specificity of mycobiont species towards their photobionts decreased under more severe climate conditions. The generalist lichen species Lecanora fuscobrunnea and Lecidea cancriformis were present in almost all habitats, but were dominant in climatically extreme areas. Carbonea vorticosa, Lecidella greenii and Rhizoplaca macleanii were confined to milder areas. In summary, the macroclimate is considered to be the main driver of species distribution, making certain species useful as bioindicators of climate conditions and, consequently, for assessing the consequences of climate change.


Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 506
Author(s):  
Claudia Brunetti ◽  
Henk Siepel ◽  
Peter Convey ◽  
Pietro Paolo Fanciulli ◽  
Francesco Nardi ◽  
...  

In the harsh Antarctic terrestrial ecosystems, invertebrates are currently confined to sparse and restricted ice free areas, where they have survived on multi-million-year timescales in refugia. The limited dispersal abilities of these invertebrate species, their specific habitat requirements, and the presence of geographical barriers can drastically reduce gene flow between populations, resulting in high genetic differentiation. On continental Antarctica, mites are one of the most diverse invertebrate groups. Recently, two new species of the free living prostigmatid mite genus Stereotydeus Berlese, 1901 were discovered, bringing the number of Antarctic and sub-Antarctic species of this genus up to 15, of which 7 occur along the coast of Victoria Land and in the Transantarctic Mountains. To examine the biodiversity of Stereotydeus spp., the present study combines phylogenetic, morphological and population genetic data of specimens collected from nine localities in Victoria Land. Genetically distinct intraspecific groups are spatially isolated in northern Victoria Land, while, for other species, the genetic haplogroups more often occur sympatrically in southern Victoria Land. We provide a new distribution map for the Stereotydeus species of Victoria Land, which will assist future decisions in matters of the protection and conservation of the unique Antarctic terrestrial fauna.


Polar Science ◽  
2021 ◽  
pp. 100738
Author(s):  
Yuki Hatano ◽  
Takumi Yoshida ◽  
Seri Matsuzuka ◽  
Takashi Osono ◽  
Satoru Hobara ◽  
...  

Geoderma ◽  
2021 ◽  
Vol 394 ◽  
pp. 115017
Author(s):  
N. Cannone ◽  
M. Guglielmin ◽  
F. Malfasi ◽  
H.W. Hubberten ◽  
D. Wagner

2021 ◽  
Author(s):  
Marjolaine Verret

<p><b>The McMurdo Dry Valleys of Antarctica are the largest ice-free region in Antarctica. Valley downcutting by major outlet glaciers and post-glacial uplift since the mid-Miocene have resulted in predominantly younger surficial sediments in the low elevation, coastal areas and significantly older sediments in high elevation, inland areas. The hyper-arid conditions that prevail in the high elevations (> 1000 m a.s.l.) of the McMurdo Dry Valleys have protected these surfaces from alteration and weathering, and provide important sediment records of paleoenvironments dating back to the early Miocene. The Friis Hills (77°45’S, 161°30’E, 1200–1500 m a.s.l.) are a 12 km-wide inselberg situated at the head of Taylor Valley. This unique location allowed Miocene-age sediments to be preserved and protected from subsequent ice sheet expansions. Permafrost within these sediments is potentially the oldest on Earth. </b></p><p>As sediments accumulate in periglacial environments, permafrost aggrades with minimal lag time and potentially preserves sediments, organic material and ground ice. The 2016 Friis Hills Drilling Project retrieved a ∼50 m thick permafrost sequence, which not only consists of an archive of Antarctic environmental changes from approximately 14–15 Ma but also records the paleoenvironmental changes of the Neogene and provides insight on the modern hyper-arid environment. The main objective of this project is to understand the unique geochemical characteristics of these permafrost cores and document 15 Myr of change in the upper elevations of the McMurdo Dry Valleys. </p><p>Paleoenvironmental reconstructions of interglacial periods suggest a tundra-like environment in the high elevations of continental Antarctica through the mid-Miocene. Plants such as lichens, liverworts, mosses, grasses and sedges, dicots and Nothofagaceae occupied the Friis Hills during the mid-Miocene. The δ13C signal of C3 plants (-25.5 ± 0.7 ‰ VPDB) corresponds to a semi-arid environment with a mean annual precipitation ranging from 300 to 850 mm yr-1. The unusually high δ15N reflects an ecosystem with up to three trophic levels, supported by the presence of insect fragments, feathers barbs (birds) and tardigrades fragments within the sediment. The deep ice lenses and their meteoric signature suggest a near-saturated active layer during the mid-Miocene. Temperature reconstructions based on the corrected δ18O value of the deep ground ice and change in paleogeography imply that the mid-Miocene (11.1–13.9 Ma) was ∼6 to 12°C warmer. These paleoenvironmental conditions are comparable to those found in the modern Arctic, such as in west Greenland. </p><p>A dominant trend of literature suggests that the high elevations of the McMurdo Dry Valleys have remained under a hyper-arid polar climate since ∼13.8 Ma. However, the presence of 10Bemet in the upper section of the Friis Hills and Table Mountain cores provides evidence for the translocation of clays, which is only possible under a warmer and wetter climate. The 10Bemet concentrations imply that these conditions were present until ∼6.0 Ma at Friis Hills and Table Mountain, consequently challenging the idea that the upper McMurdo Dry Valleys have remained frozen under hyper-arid climate since the mid-Miocene climate transition. Hence, this finding supports the hypothesis that the Miocene has undergone progressive cooling with onset of polar aridity between 7 and 5.4 Ma. The erosion-corrected paleo-active layer depth suggests mean annual air temperatures ranging from -12 to -9°C ∼6.0 Ma. In other words, this thesis shows that the upper McMurdo Dry Valleys have been frozen under hyperarid conditions only since ∼6 Ma and not for 14 Myr as previously thought. </p><p>The ground ice in the uppermost 1 m originates from the modern freezing of evaporated snowmelt and the presence of high salt content which allows unfrozen water in the near-surface. The conformity of dry permafrost samples to biological ratios suggests that the modern environment is regulated by biochemical processes and the current pool of organic carbon in the dry permafrost appears to be in equilibrium with a modern climate and ecosystem. These findings not only characterize the paleoenvironmental changes of continental Antarctica through the late Miocene but also provide a better understanding of the modern ultraxerous conditions of the McMurdo Dry Valleys.</p>


2021 ◽  
Author(s):  
Marjolaine Verret

<p><b>The McMurdo Dry Valleys of Antarctica are the largest ice-free region in Antarctica. Valley downcutting by major outlet glaciers and post-glacial uplift since the mid-Miocene have resulted in predominantly younger surficial sediments in the low elevation, coastal areas and significantly older sediments in high elevation, inland areas. The hyper-arid conditions that prevail in the high elevations (> 1000 m a.s.l.) of the McMurdo Dry Valleys have protected these surfaces from alteration and weathering, and provide important sediment records of paleoenvironments dating back to the early Miocene. The Friis Hills (77°45’S, 161°30’E, 1200–1500 m a.s.l.) are a 12 km-wide inselberg situated at the head of Taylor Valley. This unique location allowed Miocene-age sediments to be preserved and protected from subsequent ice sheet expansions. Permafrost within these sediments is potentially the oldest on Earth. </b></p><p>As sediments accumulate in periglacial environments, permafrost aggrades with minimal lag time and potentially preserves sediments, organic material and ground ice. The 2016 Friis Hills Drilling Project retrieved a ∼50 m thick permafrost sequence, which not only consists of an archive of Antarctic environmental changes from approximately 14–15 Ma but also records the paleoenvironmental changes of the Neogene and provides insight on the modern hyper-arid environment. The main objective of this project is to understand the unique geochemical characteristics of these permafrost cores and document 15 Myr of change in the upper elevations of the McMurdo Dry Valleys. </p><p>Paleoenvironmental reconstructions of interglacial periods suggest a tundra-like environment in the high elevations of continental Antarctica through the mid-Miocene. Plants such as lichens, liverworts, mosses, grasses and sedges, dicots and Nothofagaceae occupied the Friis Hills during the mid-Miocene. The δ13C signal of C3 plants (-25.5 ± 0.7 ‰ VPDB) corresponds to a semi-arid environment with a mean annual precipitation ranging from 300 to 850 mm yr-1. The unusually high δ15N reflects an ecosystem with up to three trophic levels, supported by the presence of insect fragments, feathers barbs (birds) and tardigrades fragments within the sediment. The deep ice lenses and their meteoric signature suggest a near-saturated active layer during the mid-Miocene. Temperature reconstructions based on the corrected δ18O value of the deep ground ice and change in paleogeography imply that the mid-Miocene (11.1–13.9 Ma) was ∼6 to 12°C warmer. These paleoenvironmental conditions are comparable to those found in the modern Arctic, such as in west Greenland. </p><p>A dominant trend of literature suggests that the high elevations of the McMurdo Dry Valleys have remained under a hyper-arid polar climate since ∼13.8 Ma. However, the presence of 10Bemet in the upper section of the Friis Hills and Table Mountain cores provides evidence for the translocation of clays, which is only possible under a warmer and wetter climate. The 10Bemet concentrations imply that these conditions were present until ∼6.0 Ma at Friis Hills and Table Mountain, consequently challenging the idea that the upper McMurdo Dry Valleys have remained frozen under hyper-arid climate since the mid-Miocene climate transition. Hence, this finding supports the hypothesis that the Miocene has undergone progressive cooling with onset of polar aridity between 7 and 5.4 Ma. The erosion-corrected paleo-active layer depth suggests mean annual air temperatures ranging from -12 to -9°C ∼6.0 Ma. In other words, this thesis shows that the upper McMurdo Dry Valleys have been frozen under hyperarid conditions only since ∼6 Ma and not for 14 Myr as previously thought. </p><p>The ground ice in the uppermost 1 m originates from the modern freezing of evaporated snowmelt and the presence of high salt content which allows unfrozen water in the near-surface. The conformity of dry permafrost samples to biological ratios suggests that the modern environment is regulated by biochemical processes and the current pool of organic carbon in the dry permafrost appears to be in equilibrium with a modern climate and ecosystem. These findings not only characterize the paleoenvironmental changes of continental Antarctica through the late Miocene but also provide a better understanding of the modern ultraxerous conditions of the McMurdo Dry Valleys.</p>


2021 ◽  
Author(s):  
Monika Wagner ◽  
Georg Brunauer ◽  
Arne C. Bathke ◽  
S. Craig Cary ◽  
Roman Fuchs ◽  
...  

Lecideoid lichens as dominant vegetation-forming organisms in the climatically harsh areas of the southern part of continental Antarctica show clear preferences in relation to environmental conditions (i.e. macroclimate). 306 lichen samples were included in the study, collected along the Ross Sea coast (78[deg]S - 85.5[deg]S) at six climatically different sites. The species compositions as well as the associations of their two dominant symbiotic partners (myco- and photobiont) were set in context with environmental conditions along the latitudinal gradient. Diversity values were nonlinear with respect to latitude, with the highest alpha diversity in the milder areas of the McMurdo Dry Valleys (78[deg]S) and the most southern areas (Durham Point, 85.5[deg]S; Garden Spur, 84.5[deg]S), and lowest in the especially arid and cold Darwin Area (~79.8[deg]S). Furthermore, the specificity of mycobiont species towards their photobionts decreased under more severe climate conditions. The generalist lichen species Lecanora fuscobrunnea and Lecidea cancriformis were present in almost all habitats, but were dominant in climatically extreme areas. Carbonea vorticosa, Lecidella greenii and Rhizoplaca macleanii were confined to milder areas. In summary, the macroclimate is considered to be the main driver of species distribution, making certain species useful as bioindicators of climate conditions and, consequently, for detecting climate change.


Taxonomy ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 116-141
Author(s):  
Claudia Brunetti ◽  
Henk Siepel ◽  
Pietro Paolo Fanciulli ◽  
Francesco Nardi ◽  
Peter Convey ◽  
...  

Two new mite species belonging to the genus Stereotydeus Berlese, 1901 were discovered from locations along the coast of Victoria Land, continental Antarctica. Previous records of this genus in the area under study only reported the presence of S. belli and S. mollis. Although those studies included no morphological analyses, it has since been assumed that only these species were present within the area. Specimens of S. ineffabilis sp. nov. and S. nunatakis sp. nov. were obtained, sometimes in sympatry, from four different localities in Central and South Victoria Land and are here described and illustrated using optical and scanning electron microscopy (SEM) techniques. Features useful for identification of the two new Stereotydeus species include the size of the specimens, the length of the apical segment of pedipalps, the presence/absence of division of the femora, the position of solenidia, the shape and disposition of the rhagidiform organs on the tarsi, the shape of the apical setae of the tarsi, the numbers of aggenital setae and the position of the anal opening. A key to 14 of the 15 currently described Antarctic and sub-Antarctic Stereotydeus species is provided.


2021 ◽  
Author(s):  
Cynthia Sassenroth ◽  
Ernst Hauber ◽  
Carlo Baroni ◽  
Maria Cristina Salvatore ◽  
Jean-Pierre De Vera ◽  
...  

&lt;p&gt;Polygonal patterned ground is ubiquitous in the martian mid-latitudes and in the polar regions of Earth. The latitude dependence of martian patterned ground and its morphological similarity to terrestrial patterned ground suggests that thermal contraction cracking may have been the leading formation mechanism for those polygons. Due to a lack of ground truthing on martian patterned ground, the role of liquid water in its formation and &amp;#160;&amp;#160;weather freeze-thaw processes lead to their origin is still debated. This study uses a quantitative approach, based on geomorphometrical and soil characteristics of patterned ground in continental Antarctica and glacial deposits with low inclination of Terra Nova Bay as terrestrial analogues, to understand polygon formation in martian hyper-arid conditions. &amp;#160;We investigated polygons in ice-free parts of the mountain range of Helliwell Hills (~71&amp;#176;43S / 161&amp;#176;2E) in continental Antarctica and the Northern Foothills in the coastal Terra Nova Bay area (74&amp;#176;45S / 164&amp;#176;E).&lt;/p&gt;&lt;p&gt;Field observations were made during the austral summer on the GANOVEX XI and GANOVEX XIII expeditions in Dec-Jan 2015/2016 and Oct-Nov 2018, respectively. The polygonal troughs have been mapped and digitized in ArcGIS based on high resolution satellite images. For Helliwell Hills we used World View 2 images with a pixel size of 50&amp;#160;cm. For Terra Nova Bay, Quickbird satellite imagery has been used with a pixel size of 60&amp;#160;cm. Based on these datasets, parameters such as area, perimeter, length, and width have been measured, and size, circularity, orientation, and aspect ratio of each polygon were derived from these measurements. Additionally, we used a DTM derived from World View 2 stereo imagery (ground sampling distance: 8&amp;#160;m) to calculate the average slope, aspect, and solar irradiation of each polygon. The quantitative analysis shows that the geomorphometric characteristics of polygons in the Helliwell Hills differ significantly from those in Terra Nova Bay. Polygons in the Helliwell Hills are significantly smaller than in Terra Nova Bay and are organized as orthogonal, random-orthogonal and hexagonal polygon networks, while all polygons in Terra Nova Bay form hexagonal polygon-net geometries. The correlation of polygon-net geometries and the slope gradient shows that hexagonal polygon-net geometries dominate in flat terrains, while orthogonal geometries have developed on steeper slopes or in the immediate proximity of sharp terrain margins such as topographic slopes. The polygons in Helliwell Hills do not display significant local relief, but overall, the polygon centres are slightly higher than the bounding cracks (i.e. high-centered polygons). In Terra Nova Bay the appearance of high centred polygons and a deeper trough is even more developed and well distinguishable on satellite images.&lt;/p&gt;&lt;p&gt;During the fieldwork in Helliwell Hills, excavations were made in the center of polygons and across the bounding cracks. Typically, the uppermost &amp;#8764;40 cm of regolith are dry and unconsolidated. Below that, there is commonly a sharp transition to ice-cemented material or very clear ice with no bubbles. The grain size analysis indicated no significant trend of sorting. We will present the results of our analysis and compare them with selected polygon sites on Mars.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document