Antarctic blue ice areas - towards extracting palaeoclimate information

2010 ◽  
Vol 22 (2) ◽  
pp. 99-115 ◽  
Author(s):  
Anna Sinisalo ◽  
John C. Moore

AbstractWe review the current scientific knowledge about Antarctic Blue Ice Areas (BIAs) with emphasis on their application for palaeoclimate studies. Substantial progress has been made since the review by Bintanja (1999), in particular dating the archive of ancient ice found on the surface of BIAs has progressed with advances in 14C measurements, tephrachronology, and geomorphological evidence giving better constraints to more sophisticated ice flow models. Flow modelling also provides information about past changes in ice flow velocities, accumulation rates and ice sheet elevation. The availability of gas composition in vertical cores from BIAs allows matching to well-dated global records of greenhouse gas variability over the last glacial-interglacial cycle and longer. It is clear from the limited number of studies to date that BIAs from different regions have quite different histories of formation and preservation, and that they are intimately linked to the response of their surrounding ice sheets to climate variability on glacial-interglacial time-scales. Looking to the future, climate records from BIAs are expected to provide information on variations in Southern Ocean processes as well as ice sheet evolution within the East Antarctic ice sheet at the thermal transition from cold based to warm based ice.

2007 ◽  
Vol 53 (180) ◽  
pp. 71-83 ◽  
Author(s):  
Jacob Napieralski ◽  
Alun Hubbard ◽  
Yingkui Li ◽  
Jon Harbor ◽  
Arjen P. Stroeven ◽  
...  

AbstractA major difficulty in assimilating geomorphological information with ice-sheet models is the lack of a consistent methodology to systematically compare model output and field data. As an initial step in establishing a quantitative comparison methodology, automated proximity and conformity analysis (APCA) and automated flow direction analysis (AFDA) have been developed to assess the level of correspondence between modelled ice extent and ice-marginal features such as end moraines, as well as between modelled basal flow directions and palaeo-flow direction indicators, such as glacial lineations. To illustrate the potential of such an approach, an ensemble suite of 40 numerical simulations of the Fennoscandian ice sheet were compared to end moraines of the Last Glacial Maximum and the Younger Dryas and to glacial lineations in northern Sweden using APCA and AFDA. Model experiments evaluated in this manner were ranked according to level of correspondence. Such an approach holds considerable promise for optimizing the parameter space and coherence of ice-flow models by automated, quantitative assessment of multiple ensemble experiments against a database of geological or glaciological evidence.


1997 ◽  
Vol 43 (143) ◽  
pp. 3-10 ◽  
Author(s):  
V.I. Morgan ◽  
C.W. Wookey ◽  
J. Li ◽  
T.D. van Ommen ◽  
W. Skinner ◽  
...  

AbstractThe aim of deep ice drilling on Law Dome, Antarctica, has been to exploit the special characteristics of Law Dome summit, i.e. low temperature and high accumulation near an ice divide, to obtain a high-resolution ice core for climatic/environmental studies of the Holocene and the Last Glacial Maximum (LGM). Drilling was completed in February 1993, when basal ice containing small fragments of rock was reached at a depth of 1196 m. Accurate ice dating, obtained by counting annual layers revealed by fine-detail δ18О, peroxide and electrical-conductivity measurements, is continuous down to 399 m, corresponding to a date of AD 1304. Sulphate concentration measurements, made around depths where conductivity tracing indicates volcanic fallout, allow confirmation of the dating (for Agung in 1963 and Tambora in 1815) or estimates of the eruption date from the ice dating (for the Kuwae, Vanuatu, eruption ~1457). The lower part of the core is dated by extrapolating the layer-counting using a simple model of the ice flow. At the LGM, ice-fabric measurements show a large decrease (250 to 14 mm2) in crystal size and a narrow maximum in c-axis vertically. The main zone of strong single-pole fabrics however, is located higher up in a broad zone around 900 m. Oxygen-isotope (δ18O) measurements show Holocene ice down to 1113 m, the LGM at 1133 m and warm (δ18O) about the same as Holocene) ice near the base of the ice sheet. The LGM/Holocene δ18O shift of 7.0‰, only ~1‰ larger than for Vostok, indicates that Law Dome remained an independent ice cap and was not overridden by the inland ice sheet in the Glacial.


2009 ◽  
Vol 5 (3) ◽  
pp. 329-345 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


1999 ◽  
Vol 28 ◽  
pp. 23-32 ◽  
Author(s):  
Chris D. Clark

AbstractSubglacially-produced drift lineations provide spatially extensive evidence of ice flow that can be used to aid reconstructions of the evolution of former ice sheets. Such reconstructions, however, are highly sensitive to assumptions made about the glaciodynamic context of lineament generation; when during the glacial cycle and where within the ice sheet were they produced. A range of glaciodynamic contexts are explored which include: sheet-flow submarginally restricted; sheet-flow pervasive; sheet- flow patch; ice stream; and surge or re-advance. Examples of each are provided. The crux of deciphering the appropriate context is whether lineations were laid down time-trans-gressively or isochronously. It is proposed that spatial and morphometric characteristics of lineations, and their association with other landforms, can be used as objective criteria to help distinguish between these cases.A logically complete ice-sheet reconstruction must also account for the observed patches of older lineations and other relict surfaces and deposits that have survived erasure by subsequent ice flow. A range of potential preservation mechanisms are explored, including: cold- based ice; low basal-shear stresses; shallowing of the deforming layer; and basal uncoupling.


2012 ◽  
Vol 8 (6) ◽  
pp. 1997-2017 ◽  
Author(s):  
J. Zumaque ◽  
F. Eynaud ◽  
S. Zaragosi ◽  
F. Marret ◽  
K. M. Matsuzaki ◽  
...  

Abstract. The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~60–30 cal ka BP) provides key issues to understand the atmosphere–ocean–cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the southern part of the Faeroe Bank. This sector was under the proximal influence of European ice sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) during the last glacial and thus probably responded to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis of core MD99-2281, including magnetic properties, x-ray fluorescence measurements, characterisation of the coarse (>150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst – e.g. dinocyst – assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.


2012 ◽  
Vol 6 (6) ◽  
pp. 4897-4938 ◽  
Author(s):  
S. Charbit ◽  
C. Dumas ◽  
M. Kageyama ◽  
D. M. Roche ◽  
C. Ritz

Abstract. Since the original formulation of the positive-degree-day (PDD) method, different PDD calibrations have been proposed in the literature in response to the increasing number of observations. Although these formulations provide a satisfactory description of the present-day Greenland geometry, they have not all been tested for paleo ice sheets. Using the climate-ice sheet model CLIMBER-GRISLI coupled with different PDD models, we evaluate how the parameterization of the ablation may affect the evolution of Northern Hemisphere ice sheets in the transient simulations of the last glacial cycle. Results from fully coupled simulations are compared to time-slice experiments carried out at different key periods of the last glacial period. We find large differences in the simulated ice sheets according to the chosen PDD model. These differences occur as soon as the onset of glaciation, therefore affecting the subsequent evolution of the ice system. To further investigate how the PDD method controls this evolution, special attention is given to the role of each PDD parameter. We show that glacial inception is critically dependent on the representation of the impact of the temperature variability from the daily to the inter-annual time scale, whose effect is modulated by the refreezing scheme. Finally, an additional set of sensitivity experiments has been carried out to assess the relative importance of melt processes with respect to initial ice sheet configuration in the construction and the evolution of past Northern Hemisphere ice sheets. Our analysis reveals that the impacts of the initial ice sheet condition may range from quite negligible to explaining about half of the LGM ice volume depending on the representation of stochastic temperature variations which remain the main driver of the evolution of the ice system.


2015 ◽  
Vol 9 (1) ◽  
pp. 217-228 ◽  
Author(s):  
T. Kleiner ◽  
M. Rückamp ◽  
J. H. Bondzio ◽  
A. Humbert

Abstract. We present benchmark experiments to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. Since we impose several assumptions on the experiment design, analytical solutions can be formulated for the proposed numerical experiments. The first experiment tests the functionality of the boundary condition scheme and the basal melt rate calculation during transient simulations. The second experiment addresses the steady-state enthalpy profile and the resulting position of the cold–temperate transition surface (CTS). For both experiments we assume ice flow in a parallel-sided slab decoupled from the thermal regime. We compare simulation results achieved by three different ice flow-models with these analytical solutions. The models agree well to the analytical solutions, if the change in conductivity between cold and temperate ice is properly considered in the model. In particular, the enthalpy gradient on the cold side of the CTS goes to zero in the limit of vanishing temperate-ice conductivity, as required from the physical jump conditions at the CTS.


2021 ◽  
Author(s):  
Lauren Gregoire ◽  
Niall Gandy ◽  
Lachlan Astfalck ◽  
Robin Smith ◽  
Ruza Ivanovic ◽  
...  

<p>Simulating the co-evolution of climate and ice-sheets during the Quaternary is key to understanding some of the major abrupt changes in climate, ice and sea level. Indeed, events such as the Meltwater pulse 1a rapid sea level rise and Heinrich, Dansgaard–Oeschger and the 8.2 kyr climatic events all involve the interplay between ice sheets, the atmosphere and the ocean. Unfortunately, it is challenging to simulate the coupled Climate-Ice sheet system because small biases, errors or uncertainties in parts of the models are strongly amplified by the powerful interactions between the atmosphere and ice (e.g. ice-albedo and height-mass balance feedbacks). This leads to inaccurate or even unrealistic simulations of ice sheet extent and surface climate. To overcome this issue we need some methods to effectively explore the uncertainty in the complex Climate-Ice sheet system and reduce model biases. Here we present our approach to produce ensemble of coupled Climate-Ice sheet simulations of the Last Glacial maximum that explore the uncertainties in climate and ice sheet processes.</p><p>We use the FAMOUS-ICE earth system model, which comprises a coarse-resolution and fast general circulation model coupled to the Glimmer-CISM ice sheet model. We prescribe sea surface temperature and sea ice concentrations in order to control and reduce biases in polar climate, which strongly affect the surface mass balance and simulated extent of the northern hemisphere ice sheets. We develop and apply a method to reconstruct and sample a range of realistic sea surface temperature and sea-ice concentration spatio-temporal field. These are created by merging information from PMIP3/4 climate simulations and proxy-data for sea surface temperatures at the Last Glacial Maximum with Bayes linear analysis. We then use these to generate ensembles of FAMOUS-ice simulations of the Last Glacial maximum following the PMIP4 protocol, with the Greenland and North American ice sheets interactively simulated. In addition to exploring a range of sea surface conditions, we also vary key parameters that control the surface mass balance and flow of ice sheets. We thus produce ensembles of simulations that will later be used to emulate ice sheet surface mass balance.  </p>


2018 ◽  
Vol 12 (4) ◽  
pp. 1401-1414 ◽  
Author(s):  
Marie G. P. Cavitte ◽  
Frédéric Parrenin ◽  
Catherine Ritz ◽  
Duncan A. Young ◽  
Brice Van Liefferinge ◽  
...  

Abstract. We reconstruct the pattern of surface accumulation in the region around Dome C, East Antarctica, since the last glacial. We use a set of 18 isochrones spanning all observable depths of the ice column, interpreted from various ice-penetrating radar surveys and a 1-D ice flow model to invert for accumulation rates in the region. The shallowest four isochrones are then used to calculate paleoaccumulation rates between isochrone pairs using a 1-D assumption where horizontal advection is negligible in the time interval of each layer. We observe that the large-scale (100s km) surface accumulation gradient is spatially stable through the last 73 kyr, which reflects current modeled and observed precipitation gradients in the region. We also observe small-scale (10 s km) accumulation variations linked to snow redistribution at the surface, due to changes in its slope and curvature in the prevailing wind direction that remain spatially stationary since the last glacial.


1968 ◽  
Vol 7 (49) ◽  
pp. 59-76 ◽  
Author(s):  
Steven J. Mock

AbstractData from stake measurements, marker boards and pits along a 136 km trail crossing the Thule peninsula sector of the Greenland ice sheet have been used to determine both the regional and local distribution of snow accumulation, On a regional scale trend surfaces of mean annual accumulation can be adequately predicted from a model using distance from moisture source and elevation as independent parameters. A series of step- or wave-like features break the smooth profile of the ice. sheet and cause profound changes in accumulation rates on a local scale. The accumulation pattern over these features can be predicted from surface slope and departure from regional elevation. Profiles of’ surface and subsurface topography indicate a direct relationship between subsurface hills and step-like features, but cannot be quantitatively accounted for by existing ice-flow theory. Detailed accumulation studies in conjunction with a program of spirit leveling in the vicinity of Camp Century has revealed the development a shallow valley-like feature. Within this feature accumulation rates have increased indicating that it is the result of flow phenomena.


Sign in / Sign up

Export Citation Format

Share Document