Hydrogeochemical characteristics at Cape Lamb, Vega Island, Antarctic Peninsula

2012 ◽  
Vol 24 (6) ◽  
pp. 591-607 ◽  
Author(s):  
L. Moreno ◽  
A. Silva-Busso ◽  
J. López-Martínez ◽  
J.J. Durán-Valsero ◽  
C. Martínez-Navarrete ◽  
...  

AbstractEnvironmental changes in the northern Antarctic Peninsula provide a sensitive local indicator of climate warming. A consequence of these changes is the activation of surface and subsurface hydrological cycles in areas where water, in colder conditions, would remain frozen. This paper analyses the effects of hydrological cycle activation at Cape Lamb, Vega Island. The conclusions are based on hydrochemistry and isotope interpretation of 51 representative water samples from precipitation, streams, lakes, ice, snow and groundwater. Based on these results relationships between the different components of the hydrological cycle are proposed. This paper highlights the important contribution of groundwater to surface water chemistry, the disconnection of the lakes from the overall flow, the lack of an ocean spray signature in surface water and groundwater and the significant influence of windblown dust in the composition of the analysed waters.

2020 ◽  
Author(s):  
Cansu Yurteri

<p><strong>Abstract </strong></p><p>Wetlands play an important role in the hydrologic cycle and are also regarded as major water reservoirs. Hydrochemistry application is an important tool which enables the evaluation of water type, water-rock interactions, discharge and recharge mechanism of wetlands. The aim of this study is to clarify the hydrogeochemical processes involving recharge and discharge mechanism of the wetland system and determine the hydrochemical characteristics of the wetland water, based on groundwater and surface water chemistry data. Within this scope; a detailed geological, hydrological, hydrogeological, hydrochemical and isotopic studies were performed in the Seyfe Lake catchment. Seyfe Lake and its surroundings, which is located in Mucur district, approximately 16 km northeast of Kirsehir, Turkey, is a first degree natural reserve and Ramsar Site. First field campaign was carried out in September 2019 and twenty three sampling points were selected in the study area. Sampling points were chosen from the wetland area and wells and springs that are located in the recharge area. Physicochemical parameters such as pH, specific electrical conductivity, temperature and discharge rates of the water samples were measured in-situ. Temperature, specific electrical conductivity and pH of the water samples ranges from 14.5°C to  21.2°C, from 370 µS/cm to 30500 µS/cm and from 7.15 to 8.65, respectively. Discharge rate of the springs are between 0.02 and 1 l/s. These waters have neutral to slightly alkaline character. Stable isotopes and hydrochemistry are used to identify possible recharge areas, origin of waters, groundwater-surface water relation and water-rock interactions. The δ<sup>2</sup>H and δ<sup>18</sup>O values of the water samples ranges between -27.61‰ to -80.88‰, and -11.97‰ to 0.86‰, respectively in the Seyfe wetland area. The results of this study will contribute to a better understanding of groundwater dynamics and hydrochemical processes in the wetland area.</p><p><strong><em>Key words:</em></strong> Hydrochemistry, Stable isotopes, Wetland, Ramsar site, Seyfe Lake, Kirsehir</p>


2020 ◽  
Author(s):  
Dorota Moroniak-Wawryszuk ◽  
Mateusz Wawryszuk ◽  
Stanisław Chmiel ◽  
Miłosz Huber ◽  
Paweł Kramarz ◽  
...  

<p>In this study the geochemical background of waters of Kola Peninsula in the context of decreasing the athropogenic pollution in that region was indicated. The study was conducted on 14 water samples from different phases of hydrological cycle- precipitation water, snow-melting water, ground water, river water, lake water, sea water; also 12 samples of rocks and soils were used. pH of waters, conductivity, isotopic ratio of δ18O i δD, concentration of ions (anions and cations) along with metal ions were analysed. For conductivity measure InoLab 1 (WTW) was used, cations and anions were indicated by ions chromatograph (Metrohm MIC 3), metal ions were indicated by spectrometer ICP-MS (Thermo Xseries2). Laser analyzer PICARRO L2130 was used for defining the isotopic ratio of δ18O i δD. Soils and rocks samples were analysed using scanning electrone microscope (Hitachi SU6600) with EDS add-on and spectroscope XRF Epsilon 3 (Pananalytical).</p><p>The study showed significant impact of bedrock and soils on ion composition of waters in different locations in Kola Peninsula in example on several geogenical metal ions of P, F, Cl, Fe, Mn, Cu, Ni, S. Chemical composition of water backround is strictly related to polymetalic rocks and metal ores of the Baltic Shield which build analysed area. The waters' richness in alkali minerals is due to alkaline bedrock occuring in numerous areas of Kola Peninsula. The content of metal ions like Zn, Pb, Cr, Cd in numerous water samples indicates severe anthropogenic influence on water composition which can be especially noticed in the composition of surface water affected by the nearby heavy industry plants thus pollution of surface water.</p><p>Analisys of water samples proves significant impact of geological structure on chemical composition of water and should be considered in reclamation of natural environment of Kola Peninsula from anthropogenic pollution.</p>


2021 ◽  
Author(s):  
Gaurav Sharma ◽  
Renu Lata ◽  
Nandini Thakur ◽  
Vishal Bajala ◽  
J. C. Kuniyal ◽  
...  

Abstract The present study is an attempt to accomplish the understanding of the factors impacting surface water quality of Parbati river in Kullu district of Himachal Pradesh. The main objective is to assess the overall water quality, to explore its hydrogeochemical characteristics including major ion contents and other chemical parameters using Water Quality Index (WQI), statistical techniques (principal component analysis) and conventional graphical representation such as Piper trillinear diagram, Durov. Eighteen surface water sampling sites were selected to analyze physico-chemical parameters for June 2019 and September 2019. Analytical outcomes of thirty six surface water samples for both seasons are well within the permissible limits as per BIS, 2012 & WHO 2011 for drinking and domestic purposes. Water quality characterization for the assigned use shows that maximum surface water samples falls under excellent to good water quality index and are suitable for drinking without conventional treatment. The Piper trillinear diagram classified 100% of surface water samples for both seasons’ falls in the fields of Ca2+ - Mg2+ -HCO3− water type indicating temporary hardness. Abundance of ions in the water samples is in the order: anions HCO3− > Cl−> SO42−>NO3− and cations Mg2+> Ca2+> Na+> K+. PCA identifies that the surface water chemistry is influenced by natural factors as well as minor anthropogenic activities in both the seasons.


2006 ◽  
Vol 6 (2) ◽  
pp. 47-53 ◽  
Author(s):  
D. Simazaki ◽  
M. Asami ◽  
T. Nishimura ◽  
S. Kunikane ◽  
T. Aizawa ◽  
...  

Nationwide surveys of 1,4-dioxane and methyl-t-butyl ether (MTBE) levels in raw water used for the drinking water supply were conducted at 91 water treatment plants in Japan in 2001 and 2002, prior to the revision of the drinking water quality standards. 1,4-dioxane was widely and continuously detected in raw water samples and its occurrence was more frequent and its concentrations higher in groundwater than in surface water. However, its maximum concentration in raw water was much lower than its new standard value (50 μg/L), which was determined as a level of 10−5 excessive cancer risk to humans. Trace levels of MTBE were also detected in several surface water samples.


2000 ◽  
Vol 41 (7) ◽  
pp. 197-202 ◽  
Author(s):  
F. Zanelli ◽  
B. Compagnon ◽  
J. C. Joret ◽  
M. R. de Roubin

The utilization of the ChemScan® RDI was tested for different types of water concentrates. Concentrates were prepared by cartridge filtration or flocculation, and analysed either without purification, or after Immunomagnetic separation (IMS) or flotation on percoll-sucrose gradients. Theenumeration of the oocysts was subsequently performed using the ChemScan® RDI Cryptosporidium application. Enumeration by direct microscopic observation of the entire surface of the membrane was carried out as a control, and recoveries were calculated as a ratio between the ChemScan® RDI result and the result obtained with direct microscopic enumeration. The Chemscan enumeration technique proved reliable, with recoveries yielding close to 100% in most cases (average 125%, range from 86 to 467%) for all the concentration/purification techniques tested. The quality of the antibodies was shown to be critical, with antibodies from some suppliers yielding recoveries a low as 10% in some cases. This difficulty could, however, be overcome by the utilization of the antibody provided by Chemunex. These data conclusively prove that laser scanning cytometry, which greatly facilitates the microscopic enumeration of Cryptosporidium oocysts from water samples and decreases the time of observation by four to six times, can be successfully applied to water concentrates prepared from a variety of concentration/purification techniques.


2021 ◽  
Author(s):  
Zongqi Peng ◽  
Jiaying Yang ◽  
Yi Luo ◽  
Kun Yang ◽  
Chunxue Shang

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ananda Tiwari ◽  
Anna-Maria Hokajärvi ◽  
Jorge Santo Domingo ◽  
Michael Elk ◽  
Balamuralikrishna Jayaprakash ◽  
...  

Abstract Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p <  0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66–80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer. Conclusions The low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.


2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Bishnu Prasad Sahoo ◽  
Himanshu Bhushan Sahu ◽  
Dhruti Sundar Pradhan

AbstractCoal mining and ancillary activities have the potential to cause water pollution characterized by acid mine drainage, acid mine leachates, extreme pH conditions and heavy metal contaminations. In the present work, 33 water samples in premonsoon and 34 water samples in monsoon were collected from the surface water bodies of Ib Valley coalfield, India for hydrogeochemical analysis. In premonsoon, pH, TSS, Turbidity, DO, BOD, COD, Magnesium, Cadmium, Selenium, Nickel, Aluminum and in monsoon, pH, TSS, Turbidity, DO, BOD, COD, Iron, Cadmium, Selenium, Nickel and Aluminum were nonconforming to the permissible limit set by the Bureau of Indian Standards, World Health Organisation and Ministry of Environment, Forest and Climate Change, Government of India. The average BOD/COD ratio of less than 0.6 in both seasons indicated Ib valley coalfield water was not fairly biodegradable. The analysis of variance (ANOVA) revealed that significant seasonal variation (p < 0.05) was observed in the hydro-chemical parameters viz. TSS, turbidity, redox potential, acidity, total hardness, bicarbonate alkalinity, chloride, sulfate, nitrate, sodium, calcium, magnesium, iron, cadmium, chromium and magnesium during the entire sampling period. Whereas, no significant seasonal variation (p > 0.05) was observed in pH, EC, TDS, DO, BOD, residual chlorine, COD, oil and grease, fluoride, potassium, zinc, copper, selenium, nickel, aluminum, boron, silica, temperature, salinity, cyanide and phenol. Water Quality Index revealed that 39.39% and 35.29% samples belong to poor water quality category in premonsoon and monsoon, respectively. As per Heavy Metal Pollution Index, Degree of Contamination (Cd) and Heavy metal evaluation index, medium degree of pollution were exhibited by 51.52%, 30.30% and 45.45% samples in premonsoon and 20.59%, 35.29% and 26.47% samples in monsoon. Whereas, 5.88%, 2.94% and 5.88% samples were having high degree of pollution in monsoon and 15.15% samples caused high degree of pollution with respect to Cd in premonsoon. However, EC, Na%, PI, SAR and RSC values suggested that the water can be used for irrigation. Water type of the region had been found to be Ca–Mg–Cl–SO4 by Piper diagram.


Sign in / Sign up

Export Citation Format

Share Document