Nonlinear analysis of condensed-phase surface combustion

1990 ◽  
Vol 1 (1) ◽  
pp. 73-89 ◽  
Author(s):  
Marc Garbey ◽  
Hans G. Kaper ◽  
Gary K. Leaf ◽  
Bernard J. Matkowsky

This article is concerned with the structure and stability properties of a combustion front that propagates in the axial direction along the surface of a cylindrical solid fuel element. The fuel consists of a mixture of two finely ground metallic powders, which combine upon ignition in a one-step chemical reaction. The reaction is accompanied by a melting process, which in turn enhances the reaction rate. The combustion products are in the solid state. The reaction zone, inside which the melting occurs, is modelled as a front that propagates along the surface of the cylinder. The different modes of propagation that have been observed experimentally (such as single- and multiheaded spin combustion and multiple-point combustion) are explained as the results of bifurcations from a uniformly propagating plane circular front. The stability properties of the various modes are discussed.

2019 ◽  
Author(s):  
Suchanuch Sachdev ◽  
Rhushabh Maugi ◽  
Sam Davis ◽  
Scott Doak ◽  
Zhaoxia Zhou ◽  
...  

<div>The interface between two immiscible liquids represent an ideal substrate for the assembly of nanomaterials. The defect free surface provides a reproducible support for creating densely packed ordered materials. Here a droplet flow reactor is presented for the synthesis and/ or assembly of nanomaterials at the interface of the emulsion. Each droplet acts as microreactor for a reaction between decamethylferrocene (DmFc) within the hexane and metal salts (Ag+/ Pd2+) in the aqueous phase. The hypothesis was that a spontaneous, interfacial reaction would lead to the assembly of nanomaterials creating a Pickering emulsion. The subsequent removal of the solvents showed how the Ag nanoparticles were trapped at the interface and retain the shape of the droplet, however the Pd nanoparticles were dispersed with no tertiary structure. To further exploit this, a one-step process where the particles are synthesised and then assembled into core-shell materials was proposed. The same reactions were performed in the presence of oleic acid stabilise Iron oxide nanoparticles dispersed within the hexane. It was shown that by changing the reaction rate and ratio between palladium and iron oxide a continuous coating of palladium onto iron oxide microspheres can be created. The same reaction with silver, was unsuccessful and resulted in the silver particles being shed into solution, or incorporated within the iron oxide micro particle. These insights offer a new method and chemistry within flow reactors for the creation of palladium and silver nanoparticles. We use the technique to create metal coated iron oxide nanomaterials but the methodology could be easily transferred to the assembly of other materials.</div><div><br></div>


Meccanica ◽  
2021 ◽  
Author(s):  
Dóra Patkó ◽  
Ambrus Zelei

AbstractFor both non-redundant and redundant systems, the inverse kinematics (IK) calculation is a fundamental step in the control algorithm of fully actuated serial manipulators. The tool-center-point (TCP) position is given and the joint coordinates are determined by the IK. Depending on the task, robotic manipulators can be kinematically redundant. That is when the desired task possesses lower dimensions than the degrees-of-freedom of a redundant manipulator. The IK calculation can be implemented numerically in several alternative ways not only in case of the redundant but also in the non-redundant case. We study the stability properties and the feasibility of a tracking error feedback and a direct tracking error elimination approach of the numerical implementation of IK calculation both on velocity and acceleration levels. The feedback approach expresses the joint position increment stepwise based on the local velocity or acceleration of the desired TCP trajectory and linear feedback terms. In the direct error elimination concept, the increment of the joint position is directly given by the approximate error between the desired and the realized TCP position, by assuming constant TCP velocity or acceleration. We investigate the possibility of the implementation of the direct method on acceleration level. The investigated IK methods are unified in a framework that utilizes the idea of the auxiliary input. Our closed form results and numerical case study examples show the stability properties, benefits and disadvantages of the assessed IK implementations.


1974 ◽  
Vol 96 (1) ◽  
pp. 28-35 ◽  
Author(s):  
R. C. DiPrima ◽  
J. T. Stuart

At sufficiently high operating speeds in lightly loaded journal bearings the basic laminar flow will be unstable. The instability leads to a new steady secondary motion of ring vortices around the cylinders with a regular periodicity in the axial direction and a strength that depends on the azimuthial position (Taylor vortices). Very recently published work on the basic flow and the stability of the basic flow between eccentric circular cylinders with the inner cylinder rotating is summarized so as to provide a unified description. A procedure for calculating the Taylor-vortex flow is developed, a comparison with observed properties of the flow field is made, and formulas for the load and torque are given.


2003 ◽  
Vol 2003 (2) ◽  
pp. 109-117
Author(s):  
R. Lowen ◽  
C. Verbeeck

This paper studies the stability properties of the concepts of local compactness introduced by the authors in 1998. We show that all of these concepts are stable for contractive, expansive images and for products.


1968 ◽  
Vol 78 (1) ◽  
pp. 91-103 ◽  
Author(s):  
G. P. Szegö ◽  
C. Olech ◽  
A. Cellina

2014 ◽  
Vol 745 ◽  
pp. 647-681 ◽  
Author(s):  
Yee Chee See ◽  
Matthias Ihme

AbstractLocal linear stability analysis has been shown to provide valuable information about the response of jet diffusion flames to flow-field perturbations. However, this analysis commonly relies on several modelling assumptions about the mean flow prescription, the thermo-viscous-diffusive transport properties, and the complexity and representation of the chemical reaction mechanisms. In this work, the effects of these modelling assumptions on the stability behaviour of a jet diffusion flame are systematically investigated. A flamelet formulation is combined with linear stability theory to fully account for the effects of complex transport properties and the detailed reaction chemistry on the perturbation dynamics. The model is applied to a methane–air jet diffusion flame that was experimentally investigated by Füriet al.(Proc. Combust. Inst., vol. 29, 2002, pp. 1653–1661). Detailed simulations are performed to obtain mean flow quantities, about which the stability analysis is performed. Simulation results show that the growth rate of the inviscid instability mode is insensitive to the representation of the transport properties at low frequencies, and exhibits a stronger dependence on the mean flow representation. The effects of the complexity of the reaction chemistry on the stability behaviour are investigated in the context of an adiabatic jet flame configuration. Comparisons with a detailed chemical-kinetics model show that the use of a one-step chemistry representation in combination with a simplified viscous-diffusive transport model can affect the mean flow representation and heat release location, thereby modifying the instability behaviour. This is attributed to the shift in the flame structure predicted by the one-step chemistry model, and is further exacerbated by the representation of the transport properties. A pinch-point analysis is performed to investigate the stability behaviour; it is shown that the shear-layer instability is convectively unstable, while the outer buoyancy-driven instability mode transitions from absolutely to convectively unstable in the nozzle near field, and this transition point is dependent on the Froude number.


2007 ◽  
Vol 280-283 ◽  
pp. 185-188 ◽  
Author(s):  
Jing Zhou ◽  
Wen Chen ◽  
Hua Jun Sun ◽  
Qing Xu

The electron structure of Pb(Zr1/2Ti1/2)O3(PZT), Pb(Zn1/3Nb2/3)O3(PZN) and Pb(Mn1/3Sb2/3)O3 (PMS) systems was calculated by the SCF-DV-Xα calculation method. The effects of ABO3-type perovskite and pyrochlore ceramic electron structure on their piezoelectricity were also studied. The results showed that the ferroelectric phase is more stable than paraelectric phase and the necessary condition of stable existing ferroelectric is the mixed orbit of O2p orbit and the out layer d orbit of B-site atom. The stability of ferroelectricity can be indicated by the strength of mixed orbit. When (Zr, Ti) was substituted by Mn1/3Sb2/3, Zn1/3Nb2/3, if it could form tetragonal perovskite structure, the total system energy would reduce and the mixed orbit will enhance, which improves the ferroelectricity of PZT system. However, if it forms a cubic pyrochlore structure, the ferroelectricity would lose because the covalent bond strength of B-O (axial direction) and B-O (vertical axial direction) is different obviously, which lead to the system structure become unstable.


Author(s):  
Frantisek L. Eisinger ◽  
Robert E. Sullivan

Six burner/furnace systems which operated successfully without vibration are evaluated for resistance to thermoacoustic oscillations. The evaluation is based on the Rijke and Sondhauss models representing the combined burner/furnace (cold/hot) thermoacoustic systems. Frequency differences between the lowest vulnerable furnace acoustic frequencies in the burner axial direction and those of the systems’ Rijke and Sondhauss frequencies are evaluated to check for resonances. Most importantly, the stability of the Rijke and Sondhauss models is checked against the published design stability diagram of Eisinger [1] and Eisinger and Sullivan [2]. It is shown that the resistance to thermoacoustic oscillations is adequately defined by the published design stability diagram to which the evaluated cases generally adhere. Once the system falls into the stable range, the frequency differences or resonances appear to play only a secondary role. It is concluded, however, that in conjunction with stability, the primary criterion, sufficient frequency separations shall also be maintained in the design process to preclude resonances. The paper provides sufficient details to aid the design engineers.


Sign in / Sign up

Export Citation Format

Share Document