A three-dimensional Boltzmann-like model of outgassing and contamination

1997 ◽  
Vol 8 (2) ◽  
pp. 229-249 ◽  
Author(s):  
A. BELLENI-MORANTE ◽  
G. BUSONI

We consider a Boltzmann-like model of outgassing and contamination in a three-dimensional region V= V1∪V2∪V3. V1 is the region where the contaminant particles are produced, and V2 is the region where such particles migrate and interact with some inert gas. V3 is where contamination takes place because of the particles emanating from V2. In each of the three regions, the behaviour of the contaminant particles is represented by means of a Boltzmann-like equation. We show that such a problem has a unique positive strict solution, belonging to a suitable L1 Banach space X. Finally, a system of ordinary differential equations is derived which gives the evolution of the total number of contaminant particles in each of the three regions.

2020 ◽  
Vol 98 (1) ◽  
pp. 32-38 ◽  
Author(s):  
S. Nadeem ◽  
M.Y. Malik ◽  
Nadeem Abbas

In this article, we deal with prescribed exponential surface temperature and prescribed exponential heat flux due to micropolar fluids flow on a Riga plate. The flow is induced through an exponentially stretching surface within the time-dependent thermal conductivity. Analysis is performed inside the heat transfer. In our study, two cases are discussed here, namely prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux (PEHF). The governing systems of the nonlinear partial differential equations are converted into nonlinear ordinary differential equations using appropriate similarity transformations and boundary layer approach. The reduced systems of nonlinear ordinary differential equations are solved numerically with the help of bvp4c. The significant results are shown in tables and graphs. The variation due to modified Hartman number M is observed in θ (PEST) and [Formula: see text] (PEHF). θ and [Formula: see text] are also reduced for higher values of the radiation parameter Tr. Obtained results are compared with results from the literature.


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
K. Ganesh Kumar ◽  
N.G. Rudraswamy ◽  
B.J. Gireesha ◽  
M.R. Krishnamurthy

AbstractPresent exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge–Kutta–Fehlberg fourth–fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.


Author(s):  
Martin Rasmussen ◽  
Janosch Rieger ◽  
Kevin Webster

Set differential equations are usually formulated in terms of the Hukuhara differential. As a consequence, the theory of set differential equations is perceived as an independent subject, in which all results are proved within the framework of the Hukuhara calculus. We propose to reformulate set differential equations as ordinary differential equations in a Banach space by identifying the convex and compact subsets of ℝd with their support functions. Using this representation, standard existence and uniqueness theorems for ordinary differential equations can be applied to set differential equations. We provide a geometric interpretation of the main result, and demonstrate that our approach overcomes the heavy restrictions that the use of the Hukuhara differential implies for the nature of a solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Navid Freidoonimehr ◽  
Behnam Rostami ◽  
Mohammad Mehdi Rashidi ◽  
Ebrahim Momoniat

A coupled system of nonlinear ordinary differential equations that models the three-dimensional flow of a nanofluid in a rotating channel on a lower permeable stretching porous wall is derived. The mathematical equations are derived from the Navier-Stokes equations where the governing equations are normalized by suitable similarity transformations. The fluid in the rotating channel is water that contains different nanoparticles: silver, copper, copper oxide, titanium oxide, and aluminum oxide. The differential transform method (DTM) is employed to solve the coupled system of nonlinear ordinary differential equations. The effects of the following physical parameters on the flow are investigated: characteristic parameter of the flow, rotation parameter, the magnetic parameter, nanoparticle volume fraction, the suction parameter, and different types of nanoparticles. Results are illustrated graphically and discussed in detail.


Author(s):  
Pavel A. Shamanaev ◽  
Olga S. Yazovtseva

The article states the sufficient polystability conditions for part of variables for nonlinear systems of ordinary differential equations with a sufficiently smooth right-hand side. The obtained theorem proof is based on the establishment of a local componentwise Brauer asymptotic equivalence. An operator in the Banach space that connects the solutions of the nonlinear system and its linear approximation is constructed. This operator satisfies the conditions of the Schauder principle, therefore, it has at least one fixed point. Further, using the estimates of the non-zero elements of the fundamental matrix, conditions that ensure the transition of the properties of polystability are obtained, if the trivial solution of the linear approximation system to solutions of a nonlinear system that is locally componentwise asymptotically equivalent to its linear approximation. There are given examples, that illustrate the application of proven sufficient conditions to the study of polystability of zero solutions of nonlinear systems of ordinary differential equations, including in the critical case, and also in the presence of positive eigenvalues.


Author(s):  
Nelson Onuchic ◽  
Plácido Z. Táboas

SynopsisThe perturbed linear ordinary differential equationis considered. Adopting the same approach of Massera and Schäffer [6], Corduneanu states in [2] the existence of a set of solutions of (1) contained in a given Banach space. In this paper we investigate some topological aspects of the set and analyze some of the implications from a point of view ofstability theory.


Sign in / Sign up

Export Citation Format

Share Document