scholarly journals Processes as terms: non-well-founded models for bisimulation

1992 ◽  
Vol 2 (3) ◽  
pp. 257-275 ◽  
Author(s):  
J. J. M. M. Rutten

A compositional semantics characterizing bisimulation equivalence is derived from transition system specifications in the SOS style, satisfying certain syntactic syntactic conditions. We use Aczel's nonstandard set theory for solving a recursive equation for a domain fo processes. It contains non-well-founded elements modelling possibly infinite behaviour. Semantic interpretations of syntactic operators are obtained by defining the operational semantics for terms consisting of both syntactic and semantic (processes)entities. Finally, we return to standard set theory by observing that a similar, though less general, result can be obtained with the use of complete metric spaces.

2000 ◽  
Vol 10 (6) ◽  
pp. 665-717 ◽  
Author(s):  
CHRISTEL BAIER ◽  
MARTA KWIATKOWSKA

In this paper we consider Milner's calculus CCS enriched by a probabilistic choice operator. The calculus is given operational semantics based on probabilistic transition systems. We define operational notions of preorder and equivalence as probabilistic extensions of the simulation preorder and the bisimulation equivalence respectively. We extend existing category-theoretic techniques for solving domain equations to the probabilistic case and give two denotational semantics for the calculus. The first, ‘smooth’, semantic model arises as a solution of a domain equation involving the probabilistic powerdomain and solved in the category CONT⊥ of continuous domains. The second model also involves an appropriately restricted probabilistic powerdomain, but is constructed in the category CUM of complete ultra-metric spaces, and hence is necessarily ‘discrete’. We show that the domain-theoretic semantics is fully abstract with respect to the simulation preorder, and that the metric semantics is fully abstract with respect to bisimulation.


1992 ◽  
Vol 57 (2) ◽  
pp. 741-748 ◽  
Author(s):  
David Ballard ◽  
Karel Hrbacek

In the thirty years since its invention by Abraham Robinson, nonstandard analysis has become a useful tool for research in many areas of mathematics. It seems fair to say, however, that the search for practically satisfactory foundations for the subject is not yet completed. New proposals, intended to remedy various shortcomings of older approaches, continue to be put forward. The objective of this paper is to show that nonstandard concepts have a natural place in the usual (more or less “standard”) set theory, and to argue that this approach improves upon various aspects of hitherto considered systems, while retaining most of their attractive features. We do this by working in Zermelo-Fraenkel set theory with non-well-founded sets. It has always been clear that the axiom of regularity may fail for external sets. The previous approaches either avoid non-well-foundedness by considering only that fragment of nonstandard set theory that is well-founded (over individuals; enlargements of Robinson and Zakon [17]) or reluctantly live with it (various axiomatic nonstandard set theories). Ballard and Davidon [2] were the first to propose constructive use for non-well-foundedness in the foundations of nonstandard analysis. In the present paper we adopt a very strong anti-foundation axiom. In the resulting more or less “usual” set theory, the (to the “standard” mathematician) unfamiliar concepts of standard, external and internal sets can be defined and their requisite properties proved (rather than postulated, as is the case in axiomatic nonstandard set theories).


2016 ◽  
Vol 27 (8) ◽  
pp. 1414-1436 ◽  
Author(s):  
VASSILIOS GREGORIADES ◽  
TAMÁS KISPÉTER ◽  
ARNO PAULY

Computable analysis and effective descriptive set theory are both concerned with complete metric spaces, functions between them and subsets thereof in an effective setting. The precise relationship of the various definitions used in the two disciplines has so far been neglected, a situation this paper is meant to remedy.As the role of the Cauchy completion is relevant for both effective approaches to Polish spaces, we consider the interplay of effectivity and completion in some more detail.


2001 ◽  
Vol 37 (1-2) ◽  
pp. 169-184
Author(s):  
B. Windels

In 1930 Kuratowski introduced the measure of non-compactness for complete metric spaces in order to measure the discrepancy a set may have from being compact.Since then several variants and generalizations concerning quanti .cation of topological and uniform properties have been studied.The introduction of approach uniform spaces,establishes a unifying setting which allows for a canonical quanti .cation of uniform concepts,such as completeness,which is the subject of this article.


Author(s):  
Jagdish C. Chaudhary ◽  
Shailesh T. Patel

In this paper, we prove some common fixed point theorems in complete metric spaces for self mapping satisfying a contractive condition of Integral  type.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3295-3305 ◽  
Author(s):  
Antonella Nastasi ◽  
Pasquale Vetro

Motivated by a problem concerning multi-valued mappings posed by Reich [S. Reich, Some fixed point problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 57 (1974) 194-198] and a paper of Jleli and Samet [M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014:38 (2014) 1-8], we consider a new class of multi-valued mappings that satisfy a ?-contractive condition in complete metric spaces and prove some fixed point theorems. These results generalize Reich?s and Mizoguchi-Takahashi?s fixed point theorems. Some examples are given to show the usability of the obtained results.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 118
Author(s):  
Jelena Vujaković ◽  
Eugen Ljajko ◽  
Mirjana Pavlović ◽  
Stojan Radenović

One of the main goals of this paper is to obtain new contractive conditions using the method of a strictly increasing mapping F:(0,+∞)→(−∞,+∞). According to the recently obtained results, this was possible (Wardowski’s method) only if two more properties (F2) and (F3) were used instead of the aforementioned strictly increasing (F1). Using only the fact that the function F is strictly increasing, we came to new families of contractive conditions that have not been found in the existing literature so far. Assuming that α(u,v)=1 for every u and v from metric space Ξ, we obtain some contractive conditions that can be found in the research of Rhoades (Trans. Amer. Math. Soc. 1977, 222) and Collaco and Silva (Nonlinear Anal. TMA 1997). Results of the paper significantly improve, complement, unify, generalize and enrich several results known in the current literature. In addition, we give examples with results in line with the ones we obtained.


2020 ◽  
Vol 18 (1) ◽  
pp. 448-457
Author(s):  
Erdal Karapınar ◽  
V. M. L. Hima Bindu

Abstract In this paper, we introduce a new contraction, namely, almost {\mathcal{Z}} contraction with respect to \zeta \in {\mathcal{Z}} , in the setting of complete metric spaces. We proved that such contraction possesses a fixed point and the given theorem covers several existing results in the literature. We consider an example to illustrate our result.


2019 ◽  
Vol 7 (1) ◽  
pp. 179-196
Author(s):  
Anders Björn ◽  
Daniel Hansevi

Abstract The theory of boundary regularity for p-harmonic functions is extended to unbounded open sets in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, 1 < p < ∞. The barrier classification of regular boundary points is established, and it is shown that regularity is a local property of the boundary. We also obtain boundary regularity results for solutions of the obstacle problem on open sets, and characterize regularity further in several other ways.


Sign in / Sign up

Export Citation Format

Share Document