Modelling and computation of liquid crystals

Acta Numerica ◽  
2021 ◽  
Vol 30 ◽  
pp. 765-851
Author(s):  
Wei Wang ◽  
Lei Zhang ◽  
Pingwen Zhang

Liquid crystals are a type of soft matter that is intermediate between crystalline solids and isotropic fluids. The study of liquid crystals has made tremendous progress over the past four decades, which is of great importance for fundamental scientific research and has widespread applications in industry. In this paper we review the mathematical models and their connections to liquid crystals, and survey the developments of numerical methods for finding rich configurations of liquid crystals.


2019 ◽  
Vol 26 (13) ◽  
pp. 2330-2355 ◽  
Author(s):  
Anutthaman Parthasarathy ◽  
Sasikala K. Anandamma ◽  
Karunakaran A. Kalesh

Peptide therapeutics has made tremendous progress in the past decade. Many of the inherent weaknesses of peptides which hampered their development as therapeutics are now more or less effectively tackled with recent scientific and technological advancements in integrated drug discovery settings. These include recent developments in synthetic organic chemistry, high-throughput recombinant production strategies, highresolution analytical methods, high-throughput screening options, ingenious drug delivery strategies and novel formulation preparations. Here, we will briefly describe the key methodologies and strategies used in the therapeutic peptide development processes with selected examples of the most recent developments in the field. The aim of this review is to highlight the viable options a medicinal chemist may consider in order to improve a specific pharmacological property of interest in a peptide lead entity and thereby rationally assess the therapeutic potential this class of molecules possesses while they are traditionally (and incorrectly) considered ‘undruggable’.



Author(s):  
J.-L. Barrat ◽  
J. J. de Pablo

We describe the main features of the coarse-grained models that are typically useful in modelling soft interfaces, from force fields to the continuum descriptions involving density fields. We explain the theoretical basis of the main numerical methods that are used to explore the phase space associated with these models. Finally, three recent examples, illustrating the spirit in which relatively simple simulations can contribute to solving pending problems in soft matter physics, are briefly described. Clearly, a short series of lectures can offer, at best, a biased and restricted view of the available approaches. Our aim here will be to provide the reader with such an overview, with a focus on methods and descriptions that ‘bridge the scale’ between the molecular scale and the continuum or quasi-continuum one. The objective to present a guide to the relevant literature—which has now to a large extent appeared in the form of textbooks.



Author(s):  
Sauro Succi

This chapter presents the main techniques to incorporate the effects of external and/or internal forces within the LB formalism. This is a very important task, for it permits us to access a wide body of generalized hydrodynamic applications whereby fluid motion couples to a variety of additional physical aspects, such as gravitational and electric fields, potential energy interactions, chemical reactions and many others. It should be emphasized that while hosting a broader and richer phenomenology than “plain” hydrodynamics, generalized hydrodynamics still fits the hydrodynamic picture of weak departure from suitably generalized local equilibria. This class is all but an academic curiosity; for instance, it is central to the fast-growing science of Soft Matter, a scientific discipline which has received an impressive boost in the past decades, under the drive of micro- and nanotechnological developments and major strides in biology and life sciences at large.



Soft Matter ◽  
2021 ◽  
Author(s):  
Jose X Velez ◽  
Zhaofei Zheng ◽  
Daniel A. Beller ◽  
Francesca Serra

Spontaneous emergence of chirality is a pervasive theme in soft matter. We report a transient twist forming in achiral nematic liquid crystals confined to a capillary tube with square cross...



Author(s):  
David Cunningham ◽  
Hedwig Lee ◽  
Geoff Ward

Scholars increasingly agree that histories of racial violence relate to contemporary patterns of conflict and inequality, and growing interest exists among civic leaders in reckoning with these legacies today. This volume examines the contributions and limitations of scientific research on legacies of racial violence and suggests implications for policy, practice, and other forms of intervention aimed at redress.



2014 ◽  
Vol 6 (5) ◽  
pp. 461-467 ◽  
Author(s):  
Liudas Liepa ◽  
Agnė Gervytė ◽  
Ela Jarmolajeva ◽  
Juozas Atkočiūnas

This paper focuses on a shakedown behaviour of the ideally elasto-plastic beams system under variable repeated load. The mathematical models of the analysis problems are created using numerical methods, extremum energy principles and mathematic programming. It is shown that during the shakedown process the residual displacements vary non-monotonically. By solving analysis problem, where the load locus is being progressively expanded, it is possible to determine the upper and lower bounds of residual displacements. Suggested methods are ilustrated by solving multisupported beam example problem. The results are obtained considering principle of the small displacements. Nagrinėjamas idealiai tampriai plastinės lenkiamos strypinės sistemos prisitaikomumo būvis, veikiant kartotinei kintamajai apkrovai. Analizės uždavinių matematiniai modeliai sudaromi, pasitelkus skaitinius metodus, ekstreminius energinius principus ir matematinį programavimą. Parodoma, kad prisitaikant konstrukcijai jos liekamieji poslinkiai gali kisti nemonotoniškai. Išsprendus analizės uždavinį, kuriame progresyviai plečiama apkrovos veikimo sritis, galima nustatyti viršutines ir apatines liekamųjų poslinkių kitimo ribas. Siūloma metodika iliustruota daugiaatramės sijos liekamųjų poslinkių skaičiavimo pavyzdžiu. Rezultatai gauti, esant mažų poslinkių prielaidai.



2002 ◽  
Vol 5 (4) ◽  
pp. 215-239 ◽  
Author(s):  
G.T. Lines ◽  
M.L. Buist ◽  
P. Grottum ◽  
A.J. Pullan ◽  
J. Sundnes ◽  
...  


2009 ◽  
Vol 12 (3) ◽  
pp. 241-250 ◽  
Author(s):  
Petra Claeys ◽  
Ann van Griensven ◽  
Lorenzo Benedetti ◽  
Bernard De Baets ◽  
Peter A. Vanrolleghem

Mathematical models provide insight into numerous biological, physical and chemical systems. They can be used in process design, optimisation, control and decision support, as acknowledged in many different fields of scientific research. Mathematical models do not always yield reliable results and uncertainty should be taken into account. At present, it is possible to identify some factors contributing to uncertainty, and the awareness of the necessity of uncertainty assessment is rising. In the fields of Environmental Modelling and Computational Fluid Dynamics, for instance, terminology related to uncertainty exists and is generally accepted. However, the uncertainty due to the choice of the numerical solver and its settings used to compute the solution of the models did not receive much attention in the past. A motivating example on the existence and effect of numerical uncertainty is provided and clearly shows that we can no longer ignore it. This paper introduces a new terminology to support communication about uncertainty caused by numerical solvers, so that scientists become perceptive to it.



GSA Today ◽  
2009 ◽  
Vol 19 (6) ◽  
pp. 50
Author(s):  
Patricia Vickers-Rich
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document