scholarly journals RESIDUAL DISPLACEMENTS‘ PROGRESIVE ANALYSIS OF THE MULTISUPPORTED BEAM / DAUGIAATRAMĖS SIJOS LIEKAMŲJŲ POSLINKIŲ PROGRESINĖ ANALIZĖ

2014 ◽  
Vol 6 (5) ◽  
pp. 461-467 ◽  
Author(s):  
Liudas Liepa ◽  
Agnė Gervytė ◽  
Ela Jarmolajeva ◽  
Juozas Atkočiūnas

This paper focuses on a shakedown behaviour of the ideally elasto-plastic beams system under variable repeated load. The mathematical models of the analysis problems are created using numerical methods, extremum energy principles and mathematic programming. It is shown that during the shakedown process the residual displacements vary non-monotonically. By solving analysis problem, where the load locus is being progressively expanded, it is possible to determine the upper and lower bounds of residual displacements. Suggested methods are ilustrated by solving multisupported beam example problem. The results are obtained considering principle of the small displacements. Nagrinėjamas idealiai tampriai plastinės lenkiamos strypinės sistemos prisitaikomumo būvis, veikiant kartotinei kintamajai apkrovai. Analizės uždavinių matematiniai modeliai sudaromi, pasitelkus skaitinius metodus, ekstreminius energinius principus ir matematinį programavimą. Parodoma, kad prisitaikant konstrukcijai jos liekamieji poslinkiai gali kisti nemonotoniškai. Išsprendus analizės uždavinį, kuriame progresyviai plečiama apkrovos veikimo sritis, galima nustatyti viršutines ir apatines liekamųjų poslinkių kitimo ribas. Siūloma metodika iliustruota daugiaatramės sijos liekamųjų poslinkių skaičiavimo pavyzdžiu. Rezultatai gauti, esant mažų poslinkių prielaidai.

1968 ◽  
Vol 35 (4) ◽  
pp. 796-802 ◽  
Author(s):  
P. G. Hodge ◽  
T. Belytschko

The determination of upper and lower bounds on the yield-point loads of plates are formulated as mathematical programming problems by using finite element representations for the velocity and moment fields. Results are presented for a variety of square and rectangular plate problems and are compared to other available solutions.


2016 ◽  
Vol 22 (8) ◽  
pp. 1055-1065 ◽  
Author(s):  
Liudas LIEPA ◽  
Gediminas BLAŽEVIČIUS ◽  
Dovilė MERKEVIČIŪTĖ ◽  
Juozas ATKOČIŪNAS

A vector of residual forces of the ideally elastic-plastic structure at shakedown is obtained by solving the static analysis problem. A unique distribution of the residual forces is determined if the analysis is based on the minimum complementary deformation energy principle. However, the residual displacements developing in the shakedown process of ideally elastic-plastic structures under variable repeated loads can vary non-monotonically. Nevertheless mathematical models for the optimization problems of steel structures at shakedown must include the conditions for strength (safety) and stiffness (serviceability). Residual displacements determined by the plastic deformations are included in the stiffness conditions; therefore to improve the optimal solution it is necessary to determine upper and lower bounds of the residual displacement variations. This paper describes an improved methodology for estimating the variation bounds of the residual displacements at shakedown.


Author(s):  
Boris G. Aksenov ◽  
Yuri E. Karyakin ◽  
Svetlana V. Karyakina

Equations, which have nonlinear nonmonotonic dependence of one of the coefficients on an unknown function, can describe processes of heat and mass transfer. As a rule, existing approximate methods do not provide solutions with acceptable accuracy. Numerical methods do not involve obtaining an analytical expression for the unknown function and require studying the convergence of the algorithm used. The value of absolute error is uncertain. The authors propose an approximate method for solving such problems based on Westphal comparison theorems. The comparison theorems allow finding upper and lower bounds of the unknown exact solution. A special procedure developed for the stepwise improvement of these bounds provide solutions with a given accuracy. There are only a few problems for equations with nonlinear nonmonotonic coefficients for which the exact solution has been obtained. One of such problems, presented in this article, shows the efficiency of the proposed method. The results prove that the proposed method for obtaining bounds of the solution of a nonlinear nonmonotonic equation of parabolic type can be considered as a new method of the approximate analytical solution having guaranteed accuracy. In addition, the proposed here method allows calculating the maximum deviation from the unknown exact solution of the results of other approximate and numerical methods.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 512
Author(s):  
Maryam Baghipur ◽  
Modjtaba Ghorbani ◽  
Hilal A. Ganie ◽  
Yilun Shang

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.


2020 ◽  
Vol 26 (2) ◽  
pp. 131-161
Author(s):  
Florian Bourgey ◽  
Stefano De Marco ◽  
Emmanuel Gobet ◽  
Alexandre Zhou

AbstractThe multilevel Monte Carlo (MLMC) method developed by M. B. Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56 2008, 3, 607–617] has a natural application to the evaluation of nested expectations {\mathbb{E}[g(\mathbb{E}[f(X,Y)|X])]}, where {f,g} are functions and {(X,Y)} a couple of independent random variables. Apart from the pricing of American-type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of initial margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotic optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal-dual algorithms for stochastic control problems.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


1985 ◽  
Vol 40 (10) ◽  
pp. 1052-1058 ◽  
Author(s):  
Heinz K. H. Siedentop

An upper bound on the dimension of eigenspaces of multiparticle Schrödinger operators is given. Its relation to upper and lower bounds on the eigenvalues is discussed.


Sign in / Sign up

Export Citation Format

Share Document