Expression patterns of the genes that encode lectin or lectin-related polypeptides in Robinia pseudoacacia

1999 ◽  
Vol 26 (5) ◽  
pp. 495 ◽  
Author(s):  
Kazumasa Yoshida ◽  
Kiyoshi Tazaki

Three genomic clones (Rplec2, Rplec5 and Rplec6) and a cDNA clone (LECRPA4) that encoded lectin or lectin-related polypeptides were isolated from Robinia pseudoacacia L. A comparison of the nucleotide sequences of Rplec2 and a previously reported cDNA for the subunit indicated that Rplec2 encoded the 29 kDa subunit of the inner-bark lectin RPbAI. Rplec5 encoded a polypeptide whose deduced amino acid sequence was 96.1% identical to that of a subunit of seed lectin. The amino acid sequence deduced from the open reading frame of Rplec6 showed 61.1% identity to that encoded by Rplec5. LECRPA4 was isolated from an inner bark cDNA library and appeared to encode the 26 kDa subunit of inner-bark lectin RPbAII. The expression patterns of the various genes in tissues were examined by the reverse transcriptase-polymerase chain reaction (RT-PCR) with appropriate primers. Rplec2 transcripts were detected in the inner bark and roots. Rplec5 transcripts were detected in the inner bark, seeds and roots. No Rplec6 transcripts were detected in all tissues examined. LECRPA4 transcripts were found in leaves and in the inner bark. The level of expression of Rplec2 in the inner bark appeared to be similar in samples collected in different years and from different trees, whereas levels of expression of Rplec5 and LECRPA4 varied. These results suggest the differential regulation of expression of members of the lectin gene family in tissues of R. pseudoacacia. The nucleotide sequence data reported herein will appear in the DDBJ, EMBL and GenBank Nucleotide Sequence Databases under the accession numbers AB 012632 (Rplec2), AB012633 (Rplec5), AB012634 (Rplec6) and AB012635 (LECRPA4).

1998 ◽  
Vol 64 (7) ◽  
pp. 2473-2478 ◽  
Author(s):  
Ashraf A. Khan ◽  
Eungbin Kim ◽  
Carl E. Cerniglia

ABSTRACT Aeromonas trota AK2, which was derived from ATCC 49659 and produces the extracellular pore-forming hemolytic toxin aerolysin, was mutagenized with the transposon mini-Tn5Km1 to generate a hemolysin-deficient mutant, designated strain AK253. Southern blotting data indicated that an 8.7-kb NotI fragment of the genomic DNA of strain AK253 contained the kanamycin resistance gene of mini-Tn5Km1. The 8.7-kb NotI DNA fragment was cloned into the vector pGEM5Zf(−) by selecting for kanamycin resistance, and the resultant clone, pAK71, showed aerolysin activity in Escherichia coli JM109. The nucleotide sequence of the aerA gene, located on the 1.8-kbApaI-EcoRI fragment, was determined to consist of 1,479 bp and to have an ATG initiation codon and a TAA termination codon. An in vitro coupled transcription-translation analysis of the 1.8-kb region suggested that the aerA gene codes for a 54-kDa protein, in agreement with nucleotide sequence data. The deduced amino acid sequence of the aerA gene product ofA. trota exhibited 99% homology with the amino acid sequence of the aerA product of Aeromonas sobria AB3 and 57% homology with the amino acid sequences of the products of the aerA genes of Aeromonas salmonicida 17-2 and A. sobria 33.


2004 ◽  
Vol 70 (3) ◽  
pp. 1570-1575 ◽  
Author(s):  
Dae Heoun Baek ◽  
Jae Jun Song ◽  
Seok-Joon Kwon ◽  
Chung Park ◽  
Chang-Min Jung ◽  
...  

ABSTRACT A new thermostable dipeptidase gene was cloned from the thermophile Brevibacillus borstelensis BCS-1 by genetic complementation of the d-Glu auxotroph Escherichia coli WM335 on a plate containing d-Ala-d-Glu. Nucleotide sequence analysis revealed that the gene included an open reading frame coding for a 307-amino-acid sequence with an M r of 35,000. The deduced amino acid sequence of the dipeptidase exhibited 52% similarity with the dipeptidase from Listeria monocytogenes. The enzyme was purified to homogeneity from recombinant E. coli WM335 harboring the dipeptidase gene from B. borstelensis BCS-1. Investigation of the enantioselectivity (E) to the P1 and P1′ site of Ala-Ala revealed that the ratio of the specificity constant (k cat /Km ) for l-enantioselectivity to the P1 site of Ala-Ala was 23.4 � 2.2 [E = (k cat /Km ) l,d /(k cat /Km ) d,d ], while the d-enantioselectivity to the P1′ site of Ala-Ala was 16.4 � 0.5 [E = (k cat /Km ) l,d /(k cat /Km ) l,l ] at 55�C. The enzyme was stable up to 55�C, and the optimal pH and temperature were 8.5 and 65�C, respectively. The enzyme was able to hydrolyze l-Asp-d-Ala, l-Asp-d-AlaOMe, Z-d-Ala-d-AlaOBzl, and Z-l-Asp-d-AlaOBzl, yet it could not hydrolyze d-Ala-l-Asp, d-Ala-l-Ala, d-AlaNH2, and l-AlaNH2. The enzyme also exhibited β-lactamase activity similar to that of a human renal dipeptidase. The dipeptidase successfully synthesized the precursor of the dipeptide sweetener Z-l-Asp-d-AlaOBzl.


Zygote ◽  
2002 ◽  
Vol 10 (4) ◽  
pp. 291-299 ◽  
Author(s):  
Christine A. Swann ◽  
Rory M. Hope ◽  
William G. Breed

This comparative study of the cDNA sequence of the zona pellucida C (ZPC) glycoprotein in murid rodents focuses on the nucleotide and amino acid sequence of the putative sperm-combining site. We ask the question: Has divergence evolved in the nucleotide sequence of ZPC in the murid rodents of Australia? Using RT-PCR and (RACE) PCR, the complete cDNA coding region of ZPC in the Australian hydromyine rodents Notomys alexis and Pseudomys australis, and a partial cDNA sequence from a third hydromyine rodent, Hydromys chrysogaster, has been determined. Comparison between the cDNA sequences of the hydromyine rodents reveals that the level of amino acid sequence identity between N. alexis and P. australis is 96%, whereas that between the two species of hydromyine rodents and M. musculus and R. norvegicus is 88% and 87% respectively. Despite being reproductively isolated from each other, the three species of hydromyine rodents have a 100% level of amino acid sequence identity at the putative sperm-combining site. This finding does not support the view that this site is under positive selective pressure. The sequence data obtained in this study may have important conservation implications for the dissemination of immunocontraception directed against M. musculus using ZPC antibodies.


1998 ◽  
Vol 333 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Anne M. THOMSON ◽  
David J. MEYER ◽  
John D. HAYES

The Expressed Sequence Tag database has been screened for cDNA clones encoding prostaglandin D2 synthases (PGDSs) by using a BLAST search with the N-terminal amino acid sequence of rat GSH-dependent PGDS, a class Sigma glutathione S-transferase (GST). This resulted in the identification of a cDNA from chicken spleen containing an insert of approx. 950 bp that encodes a protein of 199 amino acid residues with a predicted molecular mass of 22732 Da. The deduced primary structure of the chicken protein was not only found to possess 70% sequence identity with rat PGDS but it also demonstrated more than 35% identity with class Sigma GSTs from a range of invertebrates. The open reading frame of the chicken cDNA was expressed in Escherichia coli and the purified protein was found to display high PGDS activity. It also catalysed the conjugation of glutathione with a wide range of aryl halides, organic isothiocyanates and α,β-unsaturated carbonyls, and exhibited glutathione peroxidase activity towards cumene hydroperoxide. Like other GSTs, chicken PGDS was found to be inhibited by non-substrate ligands such as Cibacron Blue, haematin and organotin compounds. Western blotting experiments showed that among the organs studied, the expression of PGDS in the female chicken is highest in liver, kidney and intestine, with only small amounts of the enzyme being found in chicken spleen; in contrast, the rat has highest levels of PGDS in the spleen. Collectively, these results show that the structure and function, but not the expression, of the GSH-requiring PGDS is conserved between chicken and rat. The nucleotide sequence data reported in this paper have been submitted to the EMBL, GenBank, GSDB and DDBJ Nucleotide Sequence Databases under the accession number AJ006405.


2000 ◽  
Vol 182 (17) ◽  
pp. 4836-4840 ◽  
Author(s):  
Qiaomei Cheng ◽  
Hongshan Li ◽  
Keith Merdek ◽  
James T. Park

ABSTRACT The β-N-acetylglucosaminidase of Escherichia coli was found to have a novel specificity and to be encoded by a gene (nagZ) that maps at 25.1 min. It corresponds to an open reading frame, ycfO, whose predicted amino acid sequence is 57% identical to that of Vibrio furnissiiExoII. NagZ hydrolyzes the β-1,4 glycosidic bond betweenN-acetylglucosamine and anhydro-N-acetylmuramic acid in cell wall degradation products following their importation into the cell during the process for recycling cell wall muropeptides. From amino acid sequence comparisons, the novel β-N-acetylglucosaminidase appears to be conserved in all 12 gram-negative bacteria whose complete or partial genome sequence data are available.


1988 ◽  
Vol 254 (2) ◽  
pp. 509-517 ◽  
Author(s):  
D Bowen ◽  
J A Littlechild ◽  
J E Fothergill ◽  
H C Watson ◽  
L Hall

Using oligonucleotide probes derived from amino acid sequencing information, the structural gene for phosphoglycerate kinase from the extreme thermophile, Thermus thermophilus, was cloned in Escherichia coli and its complete nucleotide sequence determined. The gene consists of an open reading frame corresponding to a protein of 390 amino acid residues (calculated Mr 41,791) with an extreme bias for G or C (93.1%) in the codon third base position. Comparison of the deduced amino acid sequence with that of the corresponding mesophilic yeast enzyme indicated a number of significant differences. These are discussed in terms of the unusual codon bias and their possible role in enhanced protein thermal stability.


Parasitology ◽  
2008 ◽  
Vol 135 (12) ◽  
pp. 1479-1486 ◽  
Author(s):  
W. SAIJUNTHA ◽  
P. SITHITHAWORN ◽  
S. WONGKHAM ◽  
T. LAHA ◽  
N. B. CHILTON ◽  
...  

SUMMARYThe present study compared the genetic variation among 14 different geographical isolates of Opisthorchis viverrini sensu lato from Thailand and Lao PDR using sequence data for 2 mitochondrial DNA genes, the subunit 1 of NADH dehydrogenase gene (nad1) and cytochrome c oxidase gene (cox1). Four different nad1 haplotypes were detected among isolates, all of which were identical at the amino acid sequence level. Nucleotide sequence variation among 14 isolates ranged from 0 to 0·3% for nad1. Two different cox1 haplotypes were detected among isolates. These two haplotypes differed at 2 nucleotide positions, one of which resulted in a change in the amino acid sequence. Nucleotide sequence variation among isolates for cox1 ranged from 0 to 0·5%. Comparison of cox1 sequences of O. viverrini to those of other trematodes revealed nucleotide differences of 13–31%. A phylogenetic analysis of the cox1 sequence data revealed strong statistical support for a clade containing O. viverrini and 2 other species of opisthorchid trematodes; O. felineus and Clonorchis sinsensis.


Sign in / Sign up

Export Citation Format

Share Document