Time-dependent expression of ryanodine receptors in sea urchin eggs, zygotes and early embryos

Zygote ◽  
2021 ◽  
pp. 1-4
Author(s):  
G. Percivale ◽  
C. Angelini ◽  
C. Falugi ◽  
C. Picco ◽  
G. Prestipino

Summary In this work, the presence of calcium-dependent calcium channels and their receptors (RyR) has been investigated in Paracentrotus lividus eggs and early embryos, from unfertilized egg to four-blastomere stages. Electrophysiological recordings of RyR single-channel current fluctuations showed that RyRs are functional during the first developmental events with a maximum at zygote stage, c. 40 min after fertilization, corresponding to the first cleavage. The nature of vertebrate-like RyRs active at this stage was established by specific activation/blockade experiments.

1992 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Erwin Neher

The development of patch-clamp procedures for measuring single-channel current fluctuations are described. The application of these techniques for studying secretion is discussed.


1995 ◽  
Vol 269 (1) ◽  
pp. C250-C256 ◽  
Author(s):  
J. L. Rae ◽  
A. Rich ◽  
A. C. Zamudio ◽  
O. A. Candia

Prozac (fluoxetine), a compound used therapeutically in humans to combat depression, has substantial effects on ionic conductances in rabbit corneal epithelial cells and in cultured human lens epithelium. In corneal epithelium, it reduces the current due to the large-conductance potassium channels that dominate this preparation. Its effects seem largely to decrease the open probability while leaving the single-channel current amplitude unaltered. In cultured human epithelium, currents from calcium-activated potassium channels and inward rectifiers are unaffected by Prozac. Delayed-rectifier potassium currents are reduced by Prozac in a complicated way that involves both gating and single-channel current amplitude. Fast tetrodotoxin-blockable sodium currents are also decreased by Prozac in this preparation. For all of these ion conductance effects, Prozac concentrations of 10(-5) to 10(-4) M are required. Whereas these levels are 10- to 100-fold higher than the plasma levels achieved in therapeutic use in humans, they are comparable to or less than levels needed for many other blockers of the ionic conductances studied here.


1990 ◽  
Vol 64 (1) ◽  
pp. 91-104 ◽  
Author(s):  
R. E. Fisher ◽  
R. Gray ◽  
D. Johnston

1. The properties of single voltage-gated calcium channels were investigated in acutely exposed CA3 and CA1 pyramidal neurons and granule cells of area dentata in the adult guinea pig hippocampal formation. 2. Guinea pig hippocampal slices were prepared in a conventional manner, then treated with proteolytic enzymes and gently shaken to expose the somata of the three cell types studied. Standard patch-clamp techniques were used to record current flow through calcium channels in cell-attached membrane patches with isotonic barium as the charge carrier. 3. Single-channel current amplitudes were measured at different membrane potentials. Single-channel current-voltage plots were constructed and single-channel slope conductances were found to fall into three classes. These were (approximately) 8, 14, and 25 pS, and were observed in all three cell types. 4. The three groups of channels differed from each other in voltage dependence of activation: from a holding potential of -80, the small-conductance channel began to activate at about -40 to -30 mV, the medium-conductance channel at about -20 mV, and the large-conductance channel at approximately 0 mV. 5. Ensemble averages of single-channel currents during voltage steps revealed differences in voltage-dependent inactivation. The small-conductance channel inactivated completely within approximately 50 ms during steps from -80 to -10 mV or more positive. Steps to less positive potentials resulted in less inactivation. The medium-conductance channel displayed variable inactivation during steps from -80 to 0 mV. Inactivation of this channel during a 160-ms step ranged from virtually zero to approximately 100%. The large-conductance channel displayed no significant inactivation during steps as long as 400 ms. 6. The large-conductance channel was strikingly affected by the dihydropyridine agonist Bay K8644 (0.5-2.0 microM), resulting in a high probability of channel opening, prolonged openings, and an apparent increase in the number of channels available for activation. The medium and small-conductance channels were not noticeably affected by the drug. 7. The large-conductance channel could be induced to open at very negative membrane potentials by holding the patch for several seconds at 20 or 30 mV and stepping to -30 or -40 mV. This process was enhanced by Bay K8644, resulting in prolonged openings at potentials as negative as -100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 269 (2) ◽  
pp. H443-H452 ◽  
Author(s):  
H. Ito ◽  
K. Ono

The single-channel current of the delayed rectifier K+ current (IK) was recorded in rabbit sinoatrial node cells. In the cell-attached patch, depolarization from -70 mV to potentials more positive than -50 mV activated the IK channel while repolarization deactivated it. The single-channel conductance was 7.8 pS for the outward current and 10.8 pS for the inward current (n = 6). The steady-state open probability (NPo) was maximum at around -30 mV and markedly decreased at more positive potentials. On repolarization from positive potentials, the channel was initially closed and then rapidly opened. The ensemble average showed an initial rise to a peak followed by the deactivation time course. Because the channel events were completely blocked by E-4031, the drug-sensitive component was examined in the whole cell current. The steady-state current-voltage relation of the drug-sensitive current showed a marked negative slope at potentials more positive than -10 mV. Upon repolarization, the drug-sensitive current initially increased (removal of inactivation) to the peak of the outward tail current, which was in agreement with the ensemble average of the single-channel current. We conclude that IK in the sinoatrial node cells is largely composed of the rapidly activating IK (IK,r) channels and that the inward rectification of IK,r, which is more marked than had been assumed in previous studies, is due to the decrease in NPo.


1997 ◽  
Vol 110 (5) ◽  
pp. 485-502 ◽  
Author(s):  
Louis S. Premkumar ◽  
Anthony Auerbach

Single-channel currents were recorded from mouse NR1-NR2B (ζ-ε2) receptors containing mixtures of wild-type and mutant subunits expressed in Xenopus oocytes. Mutant subunits had an asparagine-to-glutamine (N-to-Q) mutation at the N0 site of the M2 segment (NR1:598, NR2B:589). Receptors with pure N or Q NR1 and NR2 subunits generated single-channel currents with distinctive current patterns. Based on main and sublevel amplitudes, occupancy probabilities, and lifetimes, four patterns of current were identified, corresponding to receptors with the following subunit compositions (NR1/NR2): N/N, N/Q, Q/N, and Q/Q. Only one current pattern was apparent for each composition. When a mixture of N and Q NR2 subunits was coexpressed with pure mutant NR1 subunits, three single-channel current patterns were apparent. One pattern was the same as Q/Q receptors and another was the same as Q/N receptors. The third, novel pattern presumably arose from hybrid receptors having both N and Q NR2 subunits. When a mixture of N and Q NR1 subunits was coexpressed with pure mutant NR2 subunits, six single-channel current patterns were apparent. One pattern was the same as Q/Q receptors and another was the same as N/Q receptors. The four novel patterns presumably arose from hybrid receptors having both N and Q NR1 subunits. The relative frequency of NR1 hybrid receptor current patterns depended on the relative amounts of Q and N subunits that were injected into the oocytes. The number of hybrid receptor patterns suggests that there are two NR2 subunits per receptor and is consistent with either three or five NR1 subunits per receptor, depending on whether or not the order of mutant and wild-type subunits influences the current pattern. When considered in relation to other studies, the most straightforward interpretation of the results is that N-methyl-d-aspartate receptors are pentamers composed of three NR1 and two NR2 subunits.


2005 ◽  
Vol 126 (4) ◽  
pp. 339-352 ◽  
Author(s):  
Adedotun Adebamiro ◽  
Yi Cheng ◽  
John P. Johnson ◽  
Robert J. Bridges

Endogenous serine proteases have been reported to control the reabsorption of Na+ by kidney- and lung-derived epithelial cells via stimulation of electrogenic Na+ transport mediated by the epithelial Na+ channel (ENaC). In this study we investigated the effects of aprotinin on ENaC single channel properties using transepithelial fluctuation analysis in the amphibian kidney epithelium, A6. Aprotinin caused a time- and concentration-dependent inhibition (84 ± 10.5%) in the amiloride-sensitive sodium transport (INa) with a time constant of 18 min and half maximal inhibition constant of 1 μM. Analysis of amiloride analogue blocker–induced fluctuations in INa showed linear rate–concentration plots with identical blocker on and off rates in control and aprotinin-inhibited conditions. Verification of open-block kinetics allowed for the use of a pulse protocol method (Helman, S.I., X. Liu, K. Baldwin, B.L. Blazer-Yost, and W.J. Els. 1998. Am. J. Physiol. 274:C947–C957) to study the same cells under different conditions as well as the reversibility of the aprotinin effect on single channel properties. Aprotinin caused reversible changes in all three single channel properties but only the change in the number of open channels was consistent with the inhibition of INa. A 50% decrease in INa was accompanied by 50% increases in the single channel current and open probability but an 80% decrease in the number of open channels. Washout of aprotinin led to a time-dependent restoration of INa as well as the single channel properties to the control, pre-aprotinin, values. We conclude that protease regulation of INa is mediated by changes in the number of open channels in the apical membrane. The increase in the single channel current caused by protease inhibition can be explained by a hyperpolarization of the apical membrane potential as active Na+ channels are retrieved. The paradoxical increase in channel open probability caused by protease inhibition will require further investigation but does suggest a potential compensatory regulatory mechanism to maintain INa at some minimal threshold value.


Sign in / Sign up

Export Citation Format

Share Document