Effectiveness of Hospital Staff Mass-Casualty Incident Training Methods: A Systematic Literature Review

2004 ◽  
Vol 19 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Edbert B. Hsu ◽  
Mollie W. Jenckes ◽  
Christina L. Catlett ◽  
Karen A. Robinson ◽  
Carolyn Feuerstein ◽  
...  

AbstractIntroduction:Recently, mass-casualty incident (MCI) preparedness and training has received increasing attention at the hospital level.Objectives:To review the existing evidence on the effectiveness of disaster drills, technology-based interventions and tabletop exercises in training hospital staff to respond to an MCI.Methods:A systematic, evidence-based process was conducted incorporating expert panel input and a literature review with the key terms: “mass casualty”, “disaster”, “disaster planning”, and “drill”. Paired investigators reviewed citation abstracts to identify articles that included evaluation of disaster training for hospital staff. Data were abstracted from the studies (e.g., MCI type, training intervention, staff targeted, objectives, evaluation methods, and results). Study quality was reviewed using standardized criteria.Results:Of 243 potentially relevant citations, twenty-one met the defined criteria. Studies varied in terms of targeted staff, learning objectives, outcomes, and evaluation methods. Most were characterized by significant limitations in design and evaluation methods. Seventeen addressed the effectiveness of disaster drills in training hospital staff in responding to an MCI, four addressed technology-based interventions, and none addressed tabletop exercises. The existing evidence suggests that hospital disaster drills are effective in allowing hospital employees to become familiar with disaster procedures, identify problems in different components of response (e.g., incident command, communications, triage, patient flow, materials and resources, and security) and provide the opportunity to apply lessons learned to disaster response. The strength of evidence on other training methods is insufficient to draw valid recommendations.Conclusions:Current evidence on the effectiveness of MCI training for hospital staff is limited. A number of studies suggest that disaster drills can be effective in training hospital staff. However, more attention should be directed to evaluating the effectiveness of disaster training activities in a scientifically rigorous manner.

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Alzamani M. Idrose ◽  
Fikri M. Abu-Zidan ◽  
Nurul Liana Roslan ◽  
Khairul Izwan M. Hashim ◽  
Saiyidi Mohd Azizi Mohd Adibi ◽  
...  

Abstract Background Two city trains collided in an underground tunnel on 24 May 2021 at the height of COVID-19 pandemic near the Petronas Towers, Kuala Lumpur, Malaysia, immediately after the evening rush hours. We aim to evaluate the management of this mass casualty incident highlighting the lessons learned to be used in preparedness for similar incidents that may occur in other major cities worldwide. Methods Information regarding incident site and hospital management response were analysed. Data on demography, triaging, injuries and hospital management of patients were collected according to a designed protocol. Challenges, difficulties and their solutions were reported. Results The train's emergency response team (ERT) has shut down train movements towards the incident site. Red zone (in the tunnel), yellow zone (the station platform) and green zone (outside the station entrance) were established. The fire and rescue team arrived and assisted the ERT in the red zone. Incident command system was established at the site. Medical base station was established at the yellow zone. Two hundred and fourteen passengers were in the trains. Sixty-four of them were injured. They had a median (range) ISS of 2 (1–43), and all were sent to Hospital Kuala Lumpur (HKL). Six (9.4%) patients were clinically triaged as red (critical), 19 (29.7%) as yellow (semi-critical) and 39 (60.9%) as green (non-critical). HKL's disaster plan was activated. All patients underwent temperature and epidemiology link assessment. Seven (10.9%) patients were admitted to the hospital (3 to the ICU, 3 to the ward and 1 to a private hospital as requested by the patient), while the rest 56 (87.5%) were discharged home. Six (9.4%) needed surgery. The COVID-19 tests were conducted on seven patients (10.9%) and were negative. There were no deaths. Conclusions The mass casualty incident was handled properly because of a clear standard operating procedure, smooth coordination between multi-agencies and the hospitals, presence of a 'binary' system for 'COVID-risk' and 'non-COVID-risk' areas, and the modifications of the existing disaster plan. Preparedness for MCIs is essential during pandemics.


2007 ◽  
Vol 22 (6) ◽  
pp. 522-526 ◽  
Author(s):  
Moshe Pinkert ◽  
Yuval Bloch ◽  
Dagan Schwartz ◽  
Isaac Ashkenazi ◽  
Bishara Nakhleh ◽  
...  

AbstractIntroduction:Crowd control is essential to the handling of mass-casualty incidents (MCIs).This is the task of the police at the site of the incident. For a hospital, responsibility falls on its security forces, with the police assuming an auxiliary role. Crowd control is difficult, especially when the casualties are due to riots involving clashes between rioters and police. This study uses data regarding the October 2000 riots in Nazareth to draw lessons about the determinants of crowd control on the scene and in hospitals.Methods:Data collected from formal debriefings were processed to identify the specifics of a MCI due to massive riots. The transport of patients to the hospital and the behavior of their families were considered.The actions taken by the Hospital Manager to control crowds on the hospital premises also were analyzed.Results:During 10 days of riots (01–10 October 2000), 160 casualties, including 10 severely wounded, were evacuated to the Nazareth Italian Hospital. The Nazareth English Hospital received 132 injured patients, including one critically wounded, nine severely wounded, 26 moderately injured, and 96 mildly injured. All victims were evacuated from the scene by private vehicles and were accompanied by numerous family members. This obstructed access to hospitals and hampered the care of the casualties in the emergency department. The hospital staff was unable to perform triage at the emergency department's entrance and to assign the wounded to immediate treatment areas or waiting areas. All of the wounded were taken by their families directly into the “immediate care” location where a great effort was made to prioritize the severely injured. In order to control the events, the hospital's managers enlisted prominent individuals within the crowds to aid with control. At one point, the mayor was enlisted to successfully achieve crowd control.Conclusions:During riots, city, community, and even makeshift leaders within a crowd can play a pivotal role in helping hospital management control crowds. It may be advisable to train medical teams and hospital management to recognize potential leaders, and gain their cooperation in such an event. To optimize such cooperation, community leaders also should be acquainted with the roles of public health agencies and emergency services systems.


2021 ◽  
Author(s):  
Alzamani M. Idrose ◽  
Fikri M. Abu-Zidan ◽  
Nurul Liana Roslan ◽  
Khairul Izwan M. Hashim ◽  
Saiyidi Mohd Azizi Mohd Adibi ◽  
...  

Abstract Background: Two city trains collided in an underground tunnel on 24th May 2021 at the height of Covid-19 pandemic near the Petronas Towers, Kuala Lumpur, Malaysia immediately after the evening rush hours. We aim to evaluate the management of this mass casualty incident highlighting the lessons learned to be used in preparedness for similar incidents that may occur in other major cities worldwide. Methods: Information regarding incident site and hospital management response were analysed. Data on demography, triaging, injuries and hospital management of patients were collected according to a designed protocol. Challenges, difficulties and their solutions were reported. Results: The train's emergency response team (ERT) has shut down train movements towards the incident site. Red zone (in the tunnel), yellow zone (the station platform) and green zone (outside the station entrance) were established. The fire and rescue team arrived and assisted the ERT in the red zone. Incident command system was established at the site. Medical base station was established at the yellow zone. 214 passengers were in the trains. 64 of them were injured. They had a median (range) ISS of 2 (1-43) and all were sent to Hospital Kuala Lumpur (HKL). Six (9.4%) patients were clinically triaged as red (critical), 19 (29.7%) as yellow (semi-critical) and 39 (60.9%) as green (non-critical). HKL's disaster plan was activated. All patients underwent temperature and epidemiology link assessment. Seven (10.9 %) patients were admitted to the hospital (3 to the ICU, 3 to the ward, and 1 to a private hospital as requested by the patient), while the rest 56 (87.5%) (56) were discharged home. Six (9.4%) needed surgery. The Covid-19 tests were conducted on seven patients (10.9%) and was negative There were no deaths. Conclusions: The mass casualty incident was handled properly because of a clear standard operating procedure, smooth coordination between multi-agencies and the hospitals, presence of a'binary' system for 'Covid risk' and 'non-Covid risk' areas, and the modifications of the existing disaster plan. Preparedness for MCIs is essential during pandemics.


2004 ◽  
Vol 19 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Luis Romundstad ◽  
Knut Ole Sundnes ◽  
Johan Pillgram-Larsen ◽  
Geir K. Røste ◽  
Mads Gilbert

AbstractDuring a military exercise in northern Norway in March 2000, the snowladen roof of a command center collapsed with 76 persons inside. Twentyfive persons were entrapped and/or buried under snow masses. There were three deaths. Seven patients had serious injuries, three had moderate injuries, and 16 had minor injuries.A military Convalescence Camp that had been set up in a Sports Hall 125 meters from the scene was reorganized as a causality clearing station. Officers from the Convalescence Camp initially organized search and rescue. In all, 417 persons took part in the rescue work with 36 ambulances, 17 helicopters, three ambulance airplanes and one transport plane available. Two ambulances, five helicopters and one transport aircraft were used. Four patients were evacuated to a civilian hospital and six to a field hospital.The stretcher and treatment teams initially could have been more effectively organized. As resources were ample, this was a mass casualty, not a disaster. Firm incident command prevented the influx of excess resources.


CJEM ◽  
2018 ◽  
Vol 20 (S1) ◽  
pp. S40-S40
Author(s):  
A. K. Sibley ◽  
T. Jain ◽  
B. Nicholson ◽  
M. Butler ◽  
S. David ◽  
...  

Introduction: Situational awareness (SA) is essential for maintenance of scene safety and effective resource allocation in mass casualty incidents (MCI). Unmanned aerial vehicles (UAV) can potentially enhance SA with real-time visual feedback during chaotic and evolving or inaccessible events. The purpose of this study was to test the ability of paramedics to use UAV video from a simulated MCI to identify scene hazards, initiate patient triage, and designate key operational locations. Methods: A simulated MCI, including fifteen patients of varying acuity (blast type injuries), plus four hazards, was created on a college campus. The scene was surveyed by UAV capturing video of all patients, hazards, surrounding buildings and streets. Attendees of a provincial paramedic meeting were invited to participate. Participants received a lecture on SALT Triage and the principles of MCI scene management. Next, they watched the UAV video footage. Participants were directed to sort patients according to SALT Triage step one, identify injuries, and localize the patients within the campus. Additionally, they were asked to select a start point for SALT Triage step two, identify and locate hazards, and designate locations for an Incident Command Post, Treatment Area, Transport Area and Access/Egress routes. Summary statistics were performed and a linear regression model was used to assess relationships between demographic variables and both patient triage and localization. Results: Ninety-six individuals participated. Mean age was 35 years (SD 11), 46% (44) were female, and 49% (47) were Primary Care Paramedics. Most participants (80 (84%)) correctly sorted at least 12 of 15 patients. Increased age was associated with decreased triage accuracy [-0.04(-0.07,-0.01);p=0.031]. Fifty-two (54%) were able to localize 12 or more of the 15 patients to a 27x 20m grid area. Advanced paramedic certification, and local residency were associated with improved patient localization [2.47(0.23,4.72);p=0.031], [-3.36(-5.61,-1.1);p=0.004]. The majority of participants (78 (81%)) chose an acceptable location to start SALT triage step two and 84% (80) identified at least three of four hazards. Approximately half (53 (55%)) of participants designated four or more of five key operational areas in appropriate locations. Conclusion: This study demonstrates the potential of UAV technology to remotely provide emergency responders with SA in a MCI. Additional research is required to further investigate optimal strategies to deploy UAVs in this context.


2011 ◽  
Vol 26 (S1) ◽  
pp. s60-s60 ◽  
Author(s):  
F. Plani

The Chris Hani Baragwanath Hospital (CHBH) in South Africa is the largest in the world, with 2,900 beds. Its trauma unit boasts 15 resuscitation bays, while the triage area has space for 40 stretchers. There are 5,000 trauma resuscitations performed yearly, out of 50,000 patients seen in the Trauma Emergency Department. There is an eight-bed Trauma Intensive Care Unit (ICU) and a 56-bed Trauma Ward. There also are 25 stepdown beds, 70 outlying beds, a six-bed Burn ICU, 20-bed ward, and a 24-bed shortstay ward. There are about 80 resuscitations and 70 trauma emergency operations weekly. However, the hospital is severely limited in financial and human resources, with only 2–3 interns, two registrars, and one trauma consultant on-call. The hospital is at > 130% bed occupancy. The CHBH was designated as the main disaster hospital for the 2010 FIFA World Cup, due to its proximity to the 96,000-seat Soccer City. Nominal disaster plans existed, but there were no resources, preparations, or knowledge, as was the case with most other government hospitals. The Trauma Directorate developed a new plan for the World Cup, future mass-casualty incidents at CHBH, and for other resource limited hospitals. The plans are centered on four critical issues: (1) preparedness of hospital structure and staff; (2) dissemination of the plan; (3) disaster training; and (4) the development of “Disaster Bags” for 350 casualties A free disaster course trained > 400 staff members on in-hospital triage and trauma management. All hospital staff were allocated specific functions in case of disasters. This is the first time the CHBH has had an integrated disaster plan, with separate equipment allocation, through private funding, and involving all disciplines.


2020 ◽  
Vol 15 (1) ◽  
pp. 33-41
Author(s):  
Thomas Simons, MA ◽  
Anke Richter, PhD ◽  
Lauren Wollman, PhD

Background: Recent mass-casualty events have exposed errors with common assumptions about response processes, notably triage and transport of patients. Response planners generally assume that the majority of patients from a mass-casualty event will have received some level of field triage and transport from the scene to the hospital will have been coordinated through on-scene incident command. When this is not the case, emergency response at the hospital is hampered as staff must be pulled to handle the influx of untriaged patients.Objective: Determine whether the use of emergency medical service (EMS) field resources in hospital triage could enhance the overall response to active-shooter and other mass-casualty events.Design: A proof of concept study was planned in conjunction with a regularly scheduled mass-casualty hospital exercise conducted by an urban level II trauma center in Utah. This was a cross-over study with triage initially performed by hospital staff, and at the midpoint of the exercise, triage was transferred to EMS field units. General performance was judged by exercise planners with limited additional data collection.Results: EMS crews at the hospital significantly enhanced the efficiency and efficacy of the triage operation in both qualitative and quantitative assessment.Conclusions: Hospital planners deemed the proof of concept exercise a success and are now experimenting with implementation of this alternate approach to triage. However, much additional work remains to fully implement this change in processes.


2019 ◽  
Vol 34 (s1) ◽  
pp. s131-s131
Author(s):  
Hsing Chia Cheng ◽  
Kuang Yu Niu ◽  
Ming Han Ho

Introduction:After a 6.0 magnitude earthquake struck Hualien on February 6, 2018, over one hundred and fifty patients crammed into the emergency department of a nearby tertiary hospital within two hours. The mass casualty incident (MCI) call was activated, and over 300 related personnel responded to the call and engaged with the MCI management.Aim:This research aimed to analyze the practice of an MCI call and to form the strategies to improve its efficiency and effectiveness.Methods:The research was conducted in a tertiary hospital in Hualien, Taiwan. Questionnaires regarding the practice of the MCI call were sent out to the healthcare providers in the emergency department who responded to that MCI operation.Results:Thirty-seven responders in the emergency department were involved in this study. 78% had participated in training courses for hospital incident command system (HICS) or MCI management before this event. On arrival at the emergency department, 69.4% of the responders were aware of the check-in station and received a clear task assignment and briefing. During the operation, 25.7% reported the lack of confidence carrying out the assigned tasks and 54.1% of the participants experienced great stress (stress score over 7 out of 10).Discussion:MCI is an uncommon event for hospital management. It is universally challenging owing to its unpredictable and time-sensitive nature. Furthermore, the administration could be further complicated by the associated disasters. Despite regular exercises and drills, there are still a significant number of participants experiencing stress and confusion during the operation. The chaotic situation may further compromise the performance of the participants. This study showed that optimizing task briefing and on-site directions may improve the performance of the MCI participants.


2017 ◽  
Vol 12 (3) ◽  
pp. 379-385 ◽  
Author(s):  
Mazen El Sayed ◽  
Ali F. Chami ◽  
Eveline Hitti

AbstractMass casualty incidents (MCIs) are becoming more frequent worldwide, especially in the Middle East where violence in Syria has spilled over to many neighboring countries. Lebanon lacks a coordinated prehospital response system to deal with MCIs; therefore, hospital preparedness plans are essential to deal with the surge of casualties. This report describes our experience in dealing with an MCI involving a car bomb in an urban area of downtown Beirut, Lebanon. It uses general response principles to propose a simplified response model for hospitals to use during MCIs. A summary of the debriefings following the event was developed and an analysis was performed with the aim of modifying our hospital’s existing disaster preparedness plan. Casualties’ arrival to our emergency department (ED), the performance of our hospital staff during the event, communication, and the coordination of resources, in addition to the response of the different departments, were examined. In dealing with MCIs, hospital plans should focus on triage area, patient registration and tracking, communication, resource coordination, essential staff functions, as well as on security issues and crowd control. Hospitals in other countries that lack a coordinated prehospital disaster response system can use the principles described here to improve their hospital’s resilience and response to MCIs. (Disaster Med Public Health Preparedness. 2018; 12: 379–385)


2016 ◽  
Vol 10 (5) ◽  
pp. 720-723 ◽  
Author(s):  
Richard V. King ◽  
Gregory Luke Larkin ◽  
Raymond L. Fowler ◽  
Dana L. Downs ◽  
Carol S. North

AbstractObjectiveTo identify key attributes of effective disaster/mass casualty first responders and leaders, thereby informing the ongoing development of a capable disaster health workforce.MethodsWe surveyed emergency response practitioners attending a conference session, the EMS State of the Science: A Gathering of Eagles. We used open-ended questions to ask participants to describe key characteristics of successful disaster/mass casualty first responders and leaders.ResultsOf the 140 session attendees, 132 (94%) participated in the survey. All responses were categorized by using a previously developed framework. The most frequently mentioned characteristics were related to incident command/disaster knowledge, teamwork/interpersonal skills, performing one’s role, and cognitive abilities. Other identified characteristics were related to communication skills, adaptability/flexibility, problem solving/decision-making, staying calm and cool under stress, personal character, and overall knowledge.ConclusionsThe survey findings support our prior focus group conclusion that important characteristics of disaster responders and leaders are not limited to the knowledge and skills typically included in disaster training. Further research should examine the extent to which these characteristics are consistently associated with actual effective performance of disaster response personnel and determine how best to incorporate these attributes into competency models, processes, and tools for the development of an effective disaster response workforce. (Disaster Med Public Health Preparedness. 2016;page 1 of 4)


Sign in / Sign up

Export Citation Format

Share Document