MEDICAL COSMOPOLITANISM:MIDDLEMARCH, CHOLERA, AND THE PATHOLOGIES OF ENGLISH MASCULINITY

2010 ◽  
Vol 38 (2) ◽  
pp. 511-528 ◽  
Author(s):  
Mary Wilson Carpenter

In 1831 the first epidemic ofwhat came to be known as “Asiatic cholera” bloomed in Britain. The disease, which in previous centuries had been known only in India, was to appear again in Britain in 1848–49, 1853–54, and 1866–67 as pandemics swept around the globe. But it was cholera's first arrival on the shores of Britain in 1831 that struck terror into British hearts. No one knew what disastrous consequences might ensue from this alien plague. Striking down perfectly healthy people, sometimes as they walked in the streets, it could kill within a few hours. So severe was the rapid dehydration caused by violent diarrhea and vomiting, and accompanied by hideously painful cramps, that victims rapidly became semi-comatose and turned blue-white. TheQuarterly Reviewcalled it “one of the most terrible pestilences which have ever desolated the earth,” and claimed that it had killed fifty million in fourteen years (Morris 14).

2012 ◽  
Vol 5 (1) ◽  
pp. 51-72 ◽  
Author(s):  
Marcelo Diversi ◽  
Dan Henhawk

Five centuries after the first arrival of European settlers in what they called the Americas, indigenous peoples and ways of knowing continue to be largely represented and reified by Western scholars and epistemologies. We argue here that, even within Qualitative Inquiry and its critical paradigms and theories, indigenous bodies and narratives continue to be relatively scarce as our interpretive communities attempt to advance decolonizing knowledge production, pedagogy, and praxis. In this article, we argue that this persistent segregation is related to an academic structure that continues to privilege Western paradigms (e.g., theoretical sophistication over visceral knowledge of oppression) and ways of knowing (e.g., reductionist binary definitions of indigeneity still too obsessed with authenticity). The center-piece of our article and critique is an email exchange between the authors about ontological, epistemological, and ethical issues of indigenous qualitative inquiry over the period of one year. We attempt to use our exchange as an instantiation—a textual, intellectual, and emotional performance—of ontological questions on indigenous qualitative inquiry: Who is indigenous? Are there common grounds among indigenous peoples of the earth? And if so, can we find more effective ways to gather in these common grounds in the 21st century? We conclude by offering our own suggestions toward decolonizing imaginations and praxis.


1968 ◽  
Vol 58 (1) ◽  
pp. 339-366
Author(s):  
Bruce R. Julian ◽  
Don L. Anderson

abstract Surface wave studies have shown that the transition region of the upper mantle, Bullen's Region C, is not spread uniformly over some 600 km but contains two relatively thin zones in which the velocity gradient is extremely high. In addition to these transition regions which start at depths near 350 and 650 km, there is another region of high velocity gradient which terminates the lowvelocity zone near 160 km. Theoretical body wave travel time and amplitude calculations for the surface wave model CIT11GB predict two prominent regions of triplication in the travel-time curves between about 15° and 40° for both P and S waves, with large amplitude later arrivals. These large later arivals provide an explanation for the scatter of travel time data in this region, as well as the varied interpretations of the “20° discontinuity.” Travel times, apparent velocities and amplitudes of P waves are calculated for the Earth models of Gutenberg, Lehmann, Jeffreys and Lukk and Nersesov. These quantities are calculated for both P and S waves for model CIT11GB. Although the first arrival travel times are similar for all the models except that of Lukk and Nersesov, the times of the later arrivals differ greatly. The neglect of later arrivals is one reason for the discrepancies among the body wave models and between the surface wave and body wave models. The amplitude calculations take into account both geometric spreading and anelasticity. Geometric spreading produces large variations in the amplitude with distance, and is an extremely sensitive function of the model parameters, providing a potentially powerful tool for studying details of the Earth's structure. The effect of attenuation on the amplitudes varies much less with distance than does the geometric spreading effect. Its main effect is to reduce the amplitude at higher frequencies, particularly for S waves, which may accunt for their observed low frequency character. Data along a profile to the northeast of the Nevada Test Site clearly show a later branch similar to the one predicted for model CIT11GB, beginning at about 12° with very large amplitudes and becoming a first arrival at about 18°. Strong later arrivals occur in the entire distance range of the data shown, 1112°. to 21°. Two models are presented which fit these data. They differ only slightly and confirm the existence of discontinuities near 400 and 600 kilometers. A method is described for predicting the effect on travel times of small changes in the Earth structure.


Geophysics ◽  
1940 ◽  
Vol 5 (4) ◽  
pp. 367-372 ◽  
Author(s):  
Alfred Wolf

Ground motion observed in seismic prospecting can be regarded as being composed of groups of waves of some predominant frequency. The velocity of propagation of such wave groups in the earth is the group velocity. A detailed application is made to the calculation of the time delay of a reflection wave group passing through the weathered layer. It appears that the weathering time of a reflection is a function of its frequency, and that it may differ from the weathering time of first arrival waves.


1940 ◽  
Vol 30 (4) ◽  
pp. 353-376
Author(s):  
John N. Adkins

Summary The study of the Alaskan earthquake of July 22, 1937, is based on the examination of original seismograms and photographic copies from seismological observatories throughout the world. The arrival times of P at 71 stations were used in locating the epicenter. By Geiger's method and the use of Jeffreys' travel times, the position of the epicenter was found to be: geographical latitude, 64.67±.04° N, longitude, 146.58±.12° W, and the time of occurrence to be 17h 9m 30.0±.25s, U.T. The epicenter lies in the Yukon-Tanana upland in central Alaska, which is not a region of frequent major earthquakes. The disagreement caused by the apparently early arrivals at College and Sitka was reduced by replacing the standard travel-time curve of P by a linear travel-time curve in the interval of epicentral distance 0° to 16° and by interpreting the first arrival at College as P. It was possible to determine the direction of the first motion of P for 51 stations. The observed distribution of first motion and the geological trends in the region of the epicenter are consistent with the earthquake's having been caused by movement along a fault with strike between N 30° E and N 37° E, and dip between 64° and 71° to the southeast, in which the southeast side of the fault was displaced relatively northeastward with the line of movement pitching between 12° and 16° northeast. A wave designated F (for “false S”) was found to precede S on the records by 20 to 55 seconds, depending on the epicentral distance. The wave is longitudinal in type and the arrival times define a linear travel-time curve. It is suggested that this wave may be a longitudinal surface wave, of the type proposed by Nakano, produced at the surface of the earth by the arrival of a transverse wave which has been reflected at a surface of discontinuity within the earth. The records show two impulses near the time when S is expected. The average time interval between the two impulses is 11.3 sec. The first, called S1, has a plane of vibration intermediate in direction between the plane of propagation and the normal thereto. The second impulse, called S2, is nearly pure SH movement. The writer wishes to express his indebtedness to Professor Perry Byerly for invaluable suggestions and criticism during the course of the investigation.


1975 ◽  
Vol 65 (1) ◽  
pp. 55-70 ◽  
Author(s):  
George L. Choy ◽  
Paul G. Richards

abstract Many seismic body waves are associated with rays which are not minimum travel-time paths. Such arrivals contain pulse deformation due to a phase shift in each frequency component. For sufficiently high frequencies, the phase shift each time a ray touches an internal caustic is π/2 and frequency-independent. The distorting effect of a frequency-independent phase shift is successfully observed in seismograms from events in several regions. The data examined are long-period (T > 9 sec). They include deep earthquakes (depth > 500 km), in which a series of well-separated S phases (S, sS, SS and sSS) are available. These show that the wave form of SS, which has been distorted in propagation through the Earth, can be derived from the wave form of sS, which is not distorted. Shallow events, in which multiple S phases overlap, also exhibit behavior predicted by phase distortion. Rays supercritically reflected or refracted at a discontinuity in the Earth also suffer a constant phase shift, which in general can have any value. An important case is SKKS: its undistorted wave form resembles that of SKS, which has a minimum travel-time path. Without exception, all the distorted wave forms bear little or no resemblance to the original wave form. That is, neither the first arrival of energy nor the subsequent relative position of peaks and troughs on a distorted wave form appear at the ray theoretical times. Thus, T-Δ curves constructed by choosing arrival times to correspond to the first arrival of energy may be biased. Similarly, doubt is cast on differential travel times chosen from first motions, or from averaging several points on what appear to be corresponding peaks and troughs of two wave forms. Some of the rays most important to seismology, in which the distortion phenomenon occurs, include P and S (where d2T/dΔ2 > 0), PKPAB, PP, SS, and SKKS. Removal of phase distortion in the data is computationally straightforward. By exploiting the resulting wave forms to full advantage in correctly picking arrival times, we may hope to improve velocity models of the Earth. It is shown that matched filtering to obtain differential travel times is appropriate for certain pairs of body waves if they are phase-corrected.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


1962 ◽  
Vol 14 ◽  
pp. 39-44
Author(s):  
A. V. Markov

Notwithstanding the fact that a number of defects and distortions, introduced in transmission of the images of the latter to the Earth, mar the negatives of the reverse side of the Moon, indirectly obtained on 7 October 1959 by the automatic interplanetary station (AIS), it was possible to use the photometric measurements of the secondary (terrestrial) positives of the reverse side of the Moon in the experiment of the first comparison of the characteristics of the surfaces of the visible and invisible hemispheres of the Moon.


Sign in / Sign up

Export Citation Format

Share Document