Asymmetry in the fossil record

2005 ◽  
Vol 13 (S2) ◽  
pp. 135-143 ◽  
Author(s):  
LOREN E. BABCOCK

Asymmetry is a fundamental aspect of the biology of all organisms, and has a deep evolutionary history. The fossil record contains evidence of both morphological and behavioural asymmetries. Morphological asymmetry is most commonly expressed as conspicuous, directional asymmetry (either lateral asymmetry or spiral asymmetry) in body fossils. Few examples of fluctuating asymmetry, a form of subtle asymmetry, have been documented from fossils. Body fossil evidence indicates that morphological asymmetry dates to the time of the appearance of the first life on Earth (Archaean Eon). Behavioural asymmetry can be assumed to have been concomitant with conspicuous morphological asymmetry, but more direct evidence is in the form of trace fossils. Trace fossil evidence suggests that behavioural asymmetry, including nervous system lateralization, was in existence by the beginning of the Palaeozoic Era.

2006 ◽  
Vol 29 (1) ◽  
pp. 55-80
Author(s):  
Jere H Lipps

The major features of protist evolution are fraught with controversies, problems and few answers, especially in early Earth history. In general they are based on molecular data and fossil evidence that respectively provide a scaffold and details of eukaryotic phylogenetic and ecologic histories. 1. Their origin, inferred from molecular sequences, occurred very early (>;3Ga). They are a chimera of different symbiont-derived organelles, including possibly the nucleus. 2. The initial diversification of eukaryotes may have occurred early in geologic time. Six supergroups exist today, each with fossils known from the Proterozoic and Phanerozoic. 3. Sex, considered an important development, may have been inherited from bacteria. 4. Precambrian protists were largely pelagic cyst-bearing taxa, but benthic forms were probably quite diverse and abundant. 5. Protists gave rise to animals long before 600 Ma through the choanoflagellates, for which no fossil record exists. 6. Acritarchs and skeletonized protists radiated in the Cambrian (544-530 my). From then on, they radiated and became extinct at all the major events recorded in the metazoan fossil record. 7. Protists dominated major environments (shelves and reefs) starting with a significant radiation in the Ordovician, followed by extinctions and other radiations until most died out at the end of the Permian. 8. In the Mesozoic, new planktic protozoa and algae appeared and radiated in pelagic environments. 9. Modern protists are important at all trophic levels in the oceans and a huge number terrestrial, parasitic and symbiotic protists must have existed for much of geologic time as well. 10. The future of protists is likely in jeopardy, just like most reefal, benthic, and planktic metazoans. An urgent need to understand the role of protists in modern threatened oceans should be addressed soon.


10.4081/19 ◽  
2012 ◽  
Vol 153 (2) ◽  
pp. 257 ◽  
Author(s):  
Giovanni Pasini ◽  
Alessandro Garassino

Garassino<em> et al.</em> (2012) reported on a rich community of decapod crustaceans including axiideans, gebiideans, anomurans, and brachyurans from the Zanclean (Early Pliocene) of the “La Serra” quarry near San Miniato (Pisa, Tuscany, central Italy). In this decapod-rich assemblage some carapaces of the common pebble crab<em> Ristoria pliocaenica</em> (Ristori, 1891) (<em>Leucosiidae Samouelle</em>, 1819) are drilled in characteristic ways, due to the predatory activity of individuals belonging to two different taxa of marine clades, possibly naticids (Gastropoda, Naticoidea), and to octopodids (Cephalopoda, Octopoda). This is the first report of direct evidence of predation by cephalopods on crabs in the fossil record.


2011 ◽  
Vol 279 (1732) ◽  
pp. 1300-1309 ◽  
Author(s):  
Rampal S. Etienne ◽  
Bart Haegeman ◽  
Tanja Stadler ◽  
Tracy Aze ◽  
Paul N. Pearson ◽  
...  

The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there are often limits to diversity. Here, we present a general approach to evaluate the likelihood of a phylogeny under a model that accommodates diversity-dependence and extinction. We find, by likelihood maximization, that extinction is estimated most precisely if the rate of increase in the number of lineages in the phylogeny saturates towards the present or first decreases and then increases. We demonstrate the utility and limits of our approach by applying it to the phylogenies for two cases where a fossil record exists (Cetacea and Cenozoic macroperforate planktonic foraminifera) and to three radiations lacking fossil evidence ( Dendroica , Plethodon and Heliconius ). We propose that the diversity-dependence model with extinction be used as the standard model for macro-evolutionary dynamics because of its biological realism and flexibility.


1998 ◽  
Vol 4 ◽  
pp. 255-285 ◽  
Author(s):  
Emily A. Cobabe

The exploration of chemosynthetic communities in the geologic record over the last ten years has generated a series of sedimentological, tectonic and geochemical criteria that help define a continuum of environments from hot hydrothermal vents to nearshore geothermal deposits. Many of these studies have used stable isotope geochemistry to uncover a depleted carbon signature that characterizes most fossil chemosynthetically derived deposits. Isotope geochemistry (carbon, nitrogen and sulfur) as been an important thread in the story of the discovery of modern chemosynthetic communities, as well, adding to understanding of the biogeochemistry of these ecosystems. With increasing awareness of the prominence of these communities, not just as a biological novelty, but as a fundamental component of life on Earth (and perhaps elsewhere), the drive to develop geochemical proxies for chemosynthetic taxa in the fossil record intensifies. Increased ability to recognize these communities provides access to a second tier of paleobiological questions, including ideas of evolutionary history and selective advantage.


2006 ◽  
Vol 361 (1470) ◽  
pp. 887-902 ◽  
Author(s):  
Martin Brasier ◽  
Nicola McLoughlin ◽  
Owen Green ◽  
David Wacey

The rock record provides us with unique evidence for testing models as to when and where cellular life first appeared on Earth. Its study, however, requires caution. The biogenicity of stromatolites and ‘microfossils’ older than 3.0 Gyr should not be accepted without critical analysis of morphospace and context, using multiple modern techniques, plus rejection of alternative non-biological (null) hypotheses. The previous view that the co-occurrence of biology-like morphology and carbonaceous chemistry in ancient, microfossil-like objects is a presumptive indicator of biogenicity is not enough. As with the famous Martian microfossils, we need to ask not ‘what do these structures remind us of?’, but ‘what are these structures?’ Earth's oldest putative ‘microfossil’ assemblages within 3.4–3.5 Gyr carbonaceous cherts, such as the Apex Chert, are likewise self-organizing structures that do not pass tests for biogenicity. There is a preservational paradox in the fossil record prior to ca 2.7 Gyr: suitable rocks (e.g. isotopically light carbonaceous cherts) are widely present, but signals of life are enigmatic and hard to decipher. One new approach includes detailed mapping of well-preserved sandstone grains in the ca 3.4 Gyr Strelley Pool Chert. These can contain endolithic microtubes showing syngenicity, grain selectivity and several levels of geochemical processing. Preliminary studies invite comparison with a class of ambient inclusion trails of putative microbial origin and with the activities of modern anaerobic proteobacteria and volcanic glass euendoliths.


Paleobiology ◽  
1996 ◽  
Vol 22 (3) ◽  
pp. 329-338 ◽  
Author(s):  
R. A. Fensome ◽  
R. A. MacRae ◽  
J. M. Moldowan ◽  
F. J. R. Taylor ◽  
G. L. Williams

Dinoflagellates are a major component of the marine microplankton and, from fossil evidence, appear to have been so for the past 200 million years. In contrast, the pre-Triassic record contains only equivocal occurrences of dinoflagellates, despite the fact that comparative ultrastructural and molecular phylogenetic evidence indicates a Precambrian origin for the lineage. Thus, it has often been assumed that the dearth of Paleozoic fossil dinoflagellates was due to a lack of preservation or recognition and that the relatively sudden appearance of dinoflagellates in the Mesozoic is an artifact of the record. However, new evidence from a detailed analysis of the fossil record and from the biogeochemical record indicates that dinoflagellates did indeed undergo a major evolutionary radiation in the early Mesozoic.


A species may go extinct either because it is unable to evolve rapidly enough to meet changing circumstances, or because its niche disappears and no capacity for rapid evolution could have saved it. Although recent extinctions can usually be interpreted as resulting from niche disappearance, the taxonomic distribution of parthenogens suggests that inability to evolve may also be important. A second distinction is between physical and biotic causes of extinction. Fossil evidence for constant taxonomic diversity, combined with species turnover, implies that biotic factors have been important. A similar conclusion emerges from studies of recent introductions of predators, competitors and parasites into new areas. The term ‘species selection’ should be confined to cases in which the outcome of selection is determined by properties of the population as a whole, rather than of individuals. The process has been of only trivial importance in producing complex adaptations, but of major importance in determining the distribution of different types of organisms. An adequate interpretation of the fossil record requires a theory of the coevolution of many interacting species. Such a theory is at present lacking, but various approaches to it are discussed.


2007 ◽  
Vol 274 (1616) ◽  
pp. 1361-1368 ◽  
Author(s):  
David J Varricchio ◽  
Anthony J Martin ◽  
Yoshihiro Katsura
Keyword(s):  

2021 ◽  
Vol 7 (24) ◽  
pp. eabf2257
Author(s):  
Alan J. S. Beavan ◽  
Davide Pisani ◽  
Philip C. J. Donoghue

Molecular evolutionary time scales are expected to predate the fossil evidence, but, particularly for major evolutionary radiations, they can imply extremely protracted stem lineages predating the origin of living clades, leading to claims of systematic overestimation of divergence times. We use macroevolutionary birth-death models to describe the range of total-group and crown-group ages expected under constant rates of speciation and extinction. We extend current predictions on origination times for crown- and total-groups, and extinction of stem-groups, demonstrating that there is broad variance in these predictions. Under constant rates of speciation and extinction, we show that the distribution of expected arthropod total-group ages is consistent with molecular clock estimates. The fossil record cannot be read literally, and our results preclude attempts to interpret the antiquity of clades based on the co-occurrence of stem- and crown-representatives.


Palaios ◽  
2020 ◽  
Vol 35 (9) ◽  
pp. 359-376
Author(s):  
RACHEL L. SURPRENANT ◽  
JAMES G. GEHLING ◽  
MARY L. DROSER

ABSTRACT The Ediacara Biota represents a turning point in the evolution of life on Earth, signifying the transition from single celled organisms to complex, community-forming macrobiota. The exceptional fossil record of the soft-bodied Ediacara Biota provides critical insight into the nature of this transition and into ecosystem dynamics leading up to the so-called “Cambrian Explosion”. However, the preservation of non-biomineralizing organisms in a diversity of lithologies goes hand-in-hand with considerable taphonomic complexity that often shrouds true paleoecological and paleobiological signatures. We address the nature of this taphonomic complexity within the fossiliferous sandstones of the Ediacara Member in South Australia. Utilizing the most fossiliferous outcropping of the Ediacara Member, located at the Nilpena Station National Heritage Ediacara Fossil Site, we conduct a focused, taxon-level biostratinomic characterization of the tubular organism Funisia dorothea. Funisia is the most abundant body fossil in the Ediacara Member, making the characterization of its preservational variability essential to the accurate interpretation of regional paleobiology and paleoecology. We describe remarkable biostratinomic complexity in all Funisia populations at Nilpena, identifying four distinct preservational variants of internal and external molds and four additional successive biostratinomic grades corresponding to loss of external characters. Synthesis of these observations identify the most robust preservational forms of Funisia for use in paleobiological interpretation and highlight the important impact that Funisia's high abundance had on regional paleoecology and on population-scale preservation in the Ediacara Member.


Sign in / Sign up

Export Citation Format

Share Document