Emotion-Based Decision Making in schizophrenia: evidence from the Iowa Gambling Task

2009 ◽  
Vol 18 (2) ◽  
pp. 104-106 ◽  
Author(s):  
Marcella Bellani ◽  
Luisa Tomelleri ◽  
Paolo Brambilla

The decision making can be defined as the mental process in which a “choice is made after reflecting on the consequences of that choice” (Bechara & Van Der Linden, 2005; Bechara et al., 1997). It is a complex process that involves cognitive as well as emotion-based functions. In fact human beings make fast adaptive decisions in daily life, and that is based on the skill to relate emotion to contextual stimuli in order to anticipate outcomes through activation of emotional states (Bechara et al., 2005). In this regard, the ventromedial prefrontal cortex (VMPFC) has been widely recognized to play a key role in the emotional decision making process. The VMPFC includes the medial part of the orbitofrontal cortex (OFC), the more ventral sectors of the medial prefrontal cortex and the anterior cingulate cortex (Bechara et al., 1997). In particular the OFC, within the VMPFC, is part of a neural system underpinning decision-making and reward-related behaviours which are thought to be linked to social conduct (Rolls, 2000).

2017 ◽  
Author(s):  
Lirong Qiu ◽  
Jie Su ◽  
Yinmei Ni ◽  
Yang Bai ◽  
Xiaoli Li ◽  
...  

AbstractDecision-making is usually accompanied by metacognition, through which a decision maker monitors the decision uncertainty and consequently revises the decision, even prior to feedback. However, the neural mechanisms of metacognition remain controversial: one theory proposes that metacognition coincides the decision-making process; and another addresses that it entails an independent neural system in the prefrontal cortex (PFC). Here we devised a novel paradigm of “decision-redecision” to investigate the metacognition process in redecision, in comparison with the decision process. We here found that the anterior PFC, including dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were exclusively activated after the initial decisions. dACC was involved in decision uncertainty monitoring, whereas lFPC was involved in decision adjustment controlling, subject to control demands of the tasks. Our findings support that the PFC is essentially involved in metacognition and further suggest that functions of the PFC in metacognition are dissociable.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca F. Kaiser ◽  
Theo O. J. Gruendler ◽  
Oliver Speck ◽  
Lennart Luettgau ◽  
Gerhard Jocham

AbstractIn a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-leaving decisions involve balancing the cost of moving against the gain expected from the alternative patch. This contrasts with value-guided decisions that typically involve maximizing reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to underlie value-guided choice. Here, we show that the balance between cortical excitation and inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in vmPFC. These results support mechanistic accounts of value-guided choice and provide evidence for a role of dACC E/I balance in patch-leaving decisions.


2018 ◽  
Vol 29 (10) ◽  
pp. 4277-4290 ◽  
Author(s):  
Patrick S Hogan ◽  
Joseph K Galaro ◽  
Vikram S Chib

Abstract The perceived effort level of an action shapes everyday decisions. Despite the importance of these perceptions for decision-making, the behavioral and neural representations of the subjective cost of effort are not well understood. While a number of studies have implicated anterior cingulate cortex (ACC) in decisions about effort/reward trade-offs, none have experimentally isolated effort valuation from reward and choice difficulty, a function that is commonly ascribed to this region. We used functional magnetic resonance imaging to monitor brain activity while human participants engaged in uncertain choices for prospective physical effort. Our task was designed to examine effort-based decision-making in the absence of reward and separated from choice difficulty—allowing us to investigate the brain’s role in effort valuation, independent of these other factors. Participants exhibited subjectivity in their decision-making, displaying increased sensitivity to changes in subjective effort as objective effort levels increased. Analysis of blood-oxygenation-level dependent activity revealed that the ventromedial prefrontal cortex (vmPFC) encoded the subjective valuation of prospective effort, and ACC activity was best described by choice difficulty. These results provide insight into the processes responsible for decision-making regarding effort, partly dissociating the roles of vmPFC and ACC in prospective valuation of effort and choice difficulty.


Author(s):  
Riadh Ouerchefani ◽  
Naoufel Ouerchefani ◽  
Mohamed Riadh Ben Rejeb ◽  
Didier Le Gall

Abstract Objective Patients with prefrontal cortex damage often transgress social rules and show lower accuracy in identifying and explaining inappropriate social behavior. The objective of this study was to examine the relationship between the ability to perceive other unintentional transgressions of social norms and both decision making and emotion recognition as these abilities are critical for appropriate social behavior. Method We examined a group of patients with focal prefrontal cortex damage (N = 28) and a group of matched control participants (N = 28) for their abilities to detect unintentional transgression of social norms using the “Faux-Pas” task of theory of mind, to make advantageous decisions on the Iowa gambling task, and to recognize basic emotions on the Ekman facial affect test. Results The group of patients with frontal lobe damage was impaired in all of these tasks compared with control participants. Moreover, all the “Faux-Pas”, Iowa gambling, and emotion recognition tasks were significantly associated and predicted by executive measures of inhibition, flexibility, or planning. However, only measures from the Iowa gambling task were associated and predicted performance on the “Faux-Pas” task. These tasks were not associated with performance in recognition of basic emotions. These findings suggest that theory of mind, executive functions, and decision-making abilities act in an interdependent way for appropriate social behavior. However, theory of mind and emotion recognition seem to have distinct but additive effects upon social behavior. Results from VLSM analysis also corroborate these data by showing a partially overlapped prefrontal circuitry underlying these cognitive domains.


PLoS Biology ◽  
2018 ◽  
Vol 16 (4) ◽  
pp. e2004037 ◽  
Author(s):  
Lirong Qiu ◽  
Jie Su ◽  
Yinmei Ni ◽  
Yang Bai ◽  
Xuesong Zhang ◽  
...  

2017 ◽  
Vol 111 ◽  
pp. 73-85 ◽  
Author(s):  
Riadh Ouerchefani ◽  
Naoufel Ouerchefani ◽  
Philippe Allain ◽  
Mohamed Riadh Ben Rejeb ◽  
Didier Le Gall

2018 ◽  
Vol 115 (33) ◽  
pp. E7680-E7689 ◽  
Author(s):  
Xiaoxue Gao ◽  
Hongbo Yu ◽  
Ignacio Sáez ◽  
Philip R. Blue ◽  
Lusha Zhu ◽  
...  

Humans can integrate social contextual information into decision-making processes to adjust their responses toward inequity. This context dependency emerges when individuals receive more (i.e., advantageous inequity) or less (i.e., disadvantageous inequity) than others. However, it is not clear whether context-dependent processing of advantageous and disadvantageous inequity involves differential neurocognitive mechanisms. Here, we used fMRI to address this question by combining an interactive game that modulates social contexts (e.g., interpersonal guilt) with computational models that enable us to characterize individual weights on inequity aversion. In each round, the participant played a dot estimation task with an anonymous coplayer. The coplayer would receive pain stimulation with 50% probability when either of them responded incorrectly. At the end of each round, the participant completed a variant of dictator game, which determined payoffs for him/herself and the coplayer. Computational modeling demonstrated the context dependency of inequity aversion: when causing pain to the coplayer (i.e., guilt context), participants cared more about the advantageous inequity and became more tolerant of the disadvantageous inequity, compared with other conditions. Consistently, neuroimaging results suggested the two types of inequity were associated with differential neurocognitive substrates. While the context-dependent processing of advantageous inequity was associated with social- and mentalizing-related processes, involving left anterior insula, right dorsolateral prefrontal cortex, and dorsomedial prefrontal cortex, the context-dependent processing of disadvantageous inequity was primarily associated with emotion- and conflict-related processes, involving left posterior insula, right amygdala, and dorsal anterior cingulate cortex. These results extend our understanding of decision-making processes related to inequity aversion.


2017 ◽  
Author(s):  
Amitai Shenhav ◽  
Mark A. Straccia ◽  
Jonathan D. Cohen ◽  
Matthew M. Botvinick

AbstractDecision-making is typically studied as a sequential process from the selection of what to attend (e.g., between possible tasks, stimuli, or stimulus attributes) to the selection of which actions to take based on the attended information. However, people often gather information across these levels in parallel. For instance, even as they choose their actions, they may continue to evaluate how much to attend other tasks or dimensions of information within a task. We scanned participants while they made such parallel evaluations, simultaneously weighing how much to attend two dynamic stimulus attributes and which response to give based on the attended information. Regions of prefrontal cortex tracked information about the stimulus attributes in dissociable ways, related to either the predicted reward (ventromedial prefrontal cortex) or the degree to which that attribute was being attended (dorsal anterior cingulate, dACC). Within dACC, adjacent regions tracked uncertainty at different levels of the decision, regarding what to attend versus how to respond. These findings bridge research on perceptual and value-based decision-making, demonstrating that people dynamically integrate information in parallel across different levels of decision making.Naturalistic decisions allow an individual to weigh their options within a particular task (e.g., how best to word the introduction to a paper) while also weighing how much to attend other tasks (e.g., responding to e-mails). These different types of decision-making have a hierarchical but reciprocal relationship: Decisions at higher levels inform the focus of attention at lower levels (e.g., whether to select between citations or email addresses) while, at the same time, information at lower levels (e.g., the salience of an incoming email) informs decisions regarding which task to attend. Critically, recent studies suggest that decisions across these levels may occur in parallel, continuously informed by information that is integrated from the environment and from one’s internal milieu1,2.Research on cognitive control and perceptual decision-making has examined how responses are selected when attentional targets are clearly defined (e.g., based on instruction to attend a stimulus dimension), including cases in which responding requires accumulating information regarding a noisy percept (e.g., evidence favoring a left or right response)3-7. Separate research on value-based decision-making has examined how individuals select which stimulus dimension(s) to attend in order to maximize their expected rewards8-11. However, it remains unclear how the accumulation of evidence to select high-level goals and/or attentional targets interacts with the simultaneous accumulation of evidence to select responses according to those goals (e.g., based on the perceptual properties of the stimuli). Recent work has highlighted the importance of such interactions to understanding task selection12-15, multi-attribute decision-making16-18, foraging behavior19-21, cognitive effort22,23, and self-control24-27.While these interactions remain poorly understood, previous research has identified candidate neural mechanisms associated with multi-attribute value-based decision-making11,28,29 and with selecting a response based on noisy information from an instructed attentional target3–5. These research areas have implicated the ventromedial prefrontal cortex (vmPFC) in tracking the value of potential targets of attention (e.g., stimulus attributes)8,11 and the dorsal anterior cingulate cortex (dACC) in tracking an individual’s uncertainty regarding which response to select30–32. It has been further proposed that dACC may differentiate between uncertainty at each of these parallel levels of decision-making (e.g., at the level of task goals or strategies vs. specific motor actions), and that these may be separately encoded at different locations along the dACC’s rostrocaudal axis32,33. However, neural activity within and across these prefrontal regions has not yet been examined in a setting in which information is weighed at both levels within and across trials.Here we use a value-based perceptual decision-making task to examine how people integrate different dynamic sources of information to decide (a) which perceptual attribute to attend and (b) how to respond based on the evidence for that attribute. Participants performed a task in which they regularly faced a conflict between attending the stimulus attribute that offered the greater reward or the attribute that was more perceptually salient (akin to persevering in writing one’s paper when an enticing email awaits). We demonstrate that dACC and vmPFC track evidence for the two attributes in dissociable ways. Across these regions, vmPFC weighs attribute evidence by the reward it predicts and dACC weighs it by its attentional priority (i.e., the degree to which that attribute drives choice). Within dACC, adjacent regions differentiated between uncertainty at the two levels of the decision, regarding what to attend (rostral dACC) versus how to respond (caudal dACC).


2021 ◽  
Author(s):  
María da Fonseca ◽  
Giovanni Maffei ◽  
Aleksandar Matic ◽  
Rubén Moreno Bote ◽  
Alexandre Hyafil

Emotional states are an important ingredient of decision-making. Human beings are immersed into a sea of emotions where episodes of high mood alternate with episodes of low mood. While changes in mood are well characterized, little is known about how these fluctuations interact with metacognition, and in particular with our perception of having made the right choice. Here, we evaluate how implicit measurements of confidence are related with the emotional states of human participants through two online longitudinal experiments involving mood self-reports and visual discrimination decision-making tasks. Self-confidence was assessed on each session by monitoring the proportion of opt-out trials when an opt-out option was available, as well as the mean reaction times on standard correct trials. We first report a strong coupling between the mood, stress, food enjoyment and quality of sleep reported by participants in the same session. Second, we confirmed that the proportion of opt-out responses as well as reaction times in non-opt-out trials provided reliable indices of self-confidence in each session. We introduce a normative measure of overconfidence based on the pattern of opt-out selection and the signal-detection-theory framework. Finally and crucially, we found that mood, sleep quality, food enjoyment and stress level are not coupled with self-confidence, but rather they fluctuate at different time scales: emotional states expose faster fluctuations (over one day or half-a-day) than self-confidence level (two-and-a-half days). Therefore, our findings suggest that emotional states and confidence in decision making spontaneously fluctuate in an independent manner in the healthy adult population.


Author(s):  
Antoine Bechara

This chapter will argue that impulse control disorders, including addiction, are the product of an imbalance between two separate but interacting neural systems: (1) an impulsive amygdala-striatum–dependent neural system that promotes automatic and habitual behaviors and (2) a reflective prefrontal cortex–dependent neural system for decision making, forecasting the future consequences of a behavior, and inhibitory control. The reflective system controls the impulsive system via several mechanisms. However, this control is not absolute; hyperactivity within the impulsive system can override the reflective system. While most prior research has focused on the impulsive system (especially the ventral striatum and its mesolimbic dopamine projection) in promoting the motivation and drive to seek drugs, or on the reflective system (prefrontal cortex) and its mechanisms for decision making and impulse control, more recent evidence suggests that a largely overlooked structure, namely the insula, plays a key role in maintaining poor impulse control, including addiction. This review highlights the potential functional role the insula plays in addiction. We propose that the insula translates bottom-up, interoceptive signals into what subjectively may be experienced as an urge or craving, which in turn potentiates the activity of the impulsive system and/or weakens or hijacks the goal-driven cognitive resources that are needed for the normal operation of the reflective system.


Sign in / Sign up

Export Citation Format

Share Document