scholarly journals The neural system of metacognition accompanying decision-making in the prefrontal cortex

PLoS Biology ◽  
2018 ◽  
Vol 16 (4) ◽  
pp. e2004037 ◽  
Author(s):  
Lirong Qiu ◽  
Jie Su ◽  
Yinmei Ni ◽  
Yang Bai ◽  
Xuesong Zhang ◽  
...  
2009 ◽  
Vol 18 (2) ◽  
pp. 104-106 ◽  
Author(s):  
Marcella Bellani ◽  
Luisa Tomelleri ◽  
Paolo Brambilla

The decision making can be defined as the mental process in which a “choice is made after reflecting on the consequences of that choice” (Bechara & Van Der Linden, 2005; Bechara et al., 1997). It is a complex process that involves cognitive as well as emotion-based functions. In fact human beings make fast adaptive decisions in daily life, and that is based on the skill to relate emotion to contextual stimuli in order to anticipate outcomes through activation of emotional states (Bechara et al., 2005). In this regard, the ventromedial prefrontal cortex (VMPFC) has been widely recognized to play a key role in the emotional decision making process. The VMPFC includes the medial part of the orbitofrontal cortex (OFC), the more ventral sectors of the medial prefrontal cortex and the anterior cingulate cortex (Bechara et al., 1997). In particular the OFC, within the VMPFC, is part of a neural system underpinning decision-making and reward-related behaviours which are thought to be linked to social conduct (Rolls, 2000).


Author(s):  
Antoine Bechara

This chapter will argue that impulse control disorders, including addiction, are the product of an imbalance between two separate but interacting neural systems: (1) an impulsive amygdala-striatum–dependent neural system that promotes automatic and habitual behaviors and (2) a reflective prefrontal cortex–dependent neural system for decision making, forecasting the future consequences of a behavior, and inhibitory control. The reflective system controls the impulsive system via several mechanisms. However, this control is not absolute; hyperactivity within the impulsive system can override the reflective system. While most prior research has focused on the impulsive system (especially the ventral striatum and its mesolimbic dopamine projection) in promoting the motivation and drive to seek drugs, or on the reflective system (prefrontal cortex) and its mechanisms for decision making and impulse control, more recent evidence suggests that a largely overlooked structure, namely the insula, plays a key role in maintaining poor impulse control, including addiction. This review highlights the potential functional role the insula plays in addiction. We propose that the insula translates bottom-up, interoceptive signals into what subjectively may be experienced as an urge or craving, which in turn potentiates the activity of the impulsive system and/or weakens or hijacks the goal-driven cognitive resources that are needed for the normal operation of the reflective system.


2017 ◽  
Author(s):  
Lirong Qiu ◽  
Jie Su ◽  
Yinmei Ni ◽  
Yang Bai ◽  
Xiaoli Li ◽  
...  

AbstractDecision-making is usually accompanied by metacognition, through which a decision maker monitors the decision uncertainty and consequently revises the decision, even prior to feedback. However, the neural mechanisms of metacognition remain controversial: one theory proposes that metacognition coincides the decision-making process; and another addresses that it entails an independent neural system in the prefrontal cortex (PFC). Here we devised a novel paradigm of “decision-redecision” to investigate the metacognition process in redecision, in comparison with the decision process. We here found that the anterior PFC, including dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were exclusively activated after the initial decisions. dACC was involved in decision uncertainty monitoring, whereas lFPC was involved in decision adjustment controlling, subject to control demands of the tasks. Our findings support that the PFC is essentially involved in metacognition and further suggest that functions of the PFC in metacognition are dissociable.


Author(s):  
Lee Peyton ◽  
Alfredo Oliveros ◽  
Doo-Sup Choi ◽  
Mi-Hyeon Jang

AbstractPsychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca F. Kaiser ◽  
Theo O. J. Gruendler ◽  
Oliver Speck ◽  
Lennart Luettgau ◽  
Gerhard Jocham

AbstractIn a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-leaving decisions involve balancing the cost of moving against the gain expected from the alternative patch. This contrasts with value-guided decisions that typically involve maximizing reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to underlie value-guided choice. Here, we show that the balance between cortical excitation and inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in vmPFC. These results support mechanistic accounts of value-guided choice and provide evidence for a role of dACC E/I balance in patch-leaving decisions.


2018 ◽  
Vol 29 (10) ◽  
pp. 4277-4290 ◽  
Author(s):  
Patrick S Hogan ◽  
Joseph K Galaro ◽  
Vikram S Chib

Abstract The perceived effort level of an action shapes everyday decisions. Despite the importance of these perceptions for decision-making, the behavioral and neural representations of the subjective cost of effort are not well understood. While a number of studies have implicated anterior cingulate cortex (ACC) in decisions about effort/reward trade-offs, none have experimentally isolated effort valuation from reward and choice difficulty, a function that is commonly ascribed to this region. We used functional magnetic resonance imaging to monitor brain activity while human participants engaged in uncertain choices for prospective physical effort. Our task was designed to examine effort-based decision-making in the absence of reward and separated from choice difficulty—allowing us to investigate the brain’s role in effort valuation, independent of these other factors. Participants exhibited subjectivity in their decision-making, displaying increased sensitivity to changes in subjective effort as objective effort levels increased. Analysis of blood-oxygenation-level dependent activity revealed that the ventromedial prefrontal cortex (vmPFC) encoded the subjective valuation of prospective effort, and ACC activity was best described by choice difficulty. These results provide insight into the processes responsible for decision-making regarding effort, partly dissociating the roles of vmPFC and ACC in prospective valuation of effort and choice difficulty.


Sign in / Sign up

Export Citation Format

Share Document