Active Phenomena in the Solar Atmosphere

1975 ◽  
Vol 2 (6) ◽  
pp. 316-317
Author(s):  
S.B. Pikel’ner

This paper gives a short description and interpretation of some solar magneto-hydrodynamical and plasma phenomena, based mainly on work by the writer and his collaborators (for an extended review see Kaplan et al. 1974).The magnetic field is considered as the main factor responsible for a number of manifestations of solar activity. At the photospheric level active regions are displayed as plages, i.e., bright areas, seen near the limb. This means that the temperature gradient in plages is smaller than in the undisturbed photosphere. The decrease in gradient is a result of an increase of convective transport of energy.

2019 ◽  
Vol 5 (4) ◽  
pp. 10-20
Author(s):  
Mikhail Krainev

This paper provides insight into heliospheric processes and galactic cosmic ray (GCR) modulation occurring due to the presence of two branches of solar activity in this solar layer. According to the topology of solar magnetic fields, these branches are called toroidal (active regions, sunspots, flares, coronal mass ejections, etc.) and poloidal (high-latitude magnetic fields, polar coronal holes, zonal unipolar magnetic regions, etc.). The main cause of different manifestations of the two branches on the solar surface and in the heliosphere — the layer at the base of the heliosphere in which the main energetic factor is the magnetic field — is formulated. In this case, the magnetic fields of the poloidal branch, which have a larger scale but a lower intensity, gain an advantage in penetrating into the heliosphere. A connection is shown between the poloidal branch and the heliospheric characteristics (solar wind velocity field, size of the heliosphere, form of the heliospheric current sheet, regular heliospheric magnetic field and its fluctuations) that, according to modern notions, determine GCR propagation in the heliosphere.


10.12737/7155 ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 75-84
Author(s):  
Анна Хлыстова ◽  
Anna Khlystova

Using data obtained with the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO), we have conducted a statistical study of the relationship between plasma flow Doppler velocities and magnetic field parameters during the appearance of active regions at the solar photospheric level. We have examined 224 emerging active regions having different spatial scales and positions on the solar disc. The following relationships have been analysed: 1) those between the negative Doppler velocities and the position of active regions emerging on the solar disc; 2) those between the negative and positive Doppler velocities and the magnetic field parameters in the ac-tive regions emerging near the solar disc centre (the vertical component); 3) those between the negative and positive Doppler velocities and the magnetic field pa-rameters in the active regions emerging near the limb (the horizontal component); 4) those between the mag-netic flux growth rate and the strength of emerging magnetic fields; 5) those between the Doppler velocities and the magnetic field parameters during the first hours after the appearance of active regions with the total unsigned magnetic flux at the peak of their development.


2019 ◽  
Vol 5 (4) ◽  
pp. 12-25
Author(s):  
Mikhail Krainev

This paper provides insight into heliospheric processes and galactic cosmic ray (GCR) modulation occurring due to the presence of two branches of solar activity in this solar layer. According to the topology of solar magnetic fields, these branches are called toroidal (active regions, sunspots, flares, coronal mass ejections, etc.) and poloidal (high-latitude magnetic fields, polar coronal holes, zonal unipolar magnetic regions, etc.). The main cause of different manifestations of the two branches on the solar surface and in the heliosphere — the layer at the base of the heliosphere in which the main energetic factor is the magnetic field — is formulated. In this case, the magnetic fields of the poloidal branch, which have a larger scale but a lower intensity, gain an advantage in penetrating into the heliosphere. A connection is shown between the poloidal branch and the heliospheric characteristics (solar wind velocity field, size of the heliosphere, form of the heliospheric current sheet, regular heliospheric magnetic field and its fluctuations) that, according to modern notions, determine GCR propagation in the heliosphere.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2015 ◽  
Vol 11 (S320) ◽  
pp. 167-174
Author(s):  
M. S. Wheatland ◽  
S. A. Gilchrist

AbstractWe review nonlinear force-free field (NLFFF) modeling of magnetic fields in active regions. The NLFFF model (in which the electric current density is parallel to the magnetic field) is often adopted to describe the coronal magnetic field, and numerical solutions to the model are constructed based on photospheric vector magnetogram boundary data. Comparative tests of NLFFF codes on sets of boundary data have revealed significant problems, in particular associated with the inconsistency of the model and the data. Nevertheless NLFFF modeling is often applied, in particular to flare-productive active regions. We examine the results, and discuss their reliability.


2001 ◽  
Vol 203 ◽  
pp. 276-279
Author(s):  
J. Ireland ◽  
A. Fludra

The Coronal Diagnostic Spectrometer (CDS) on SOHO carries out daily synoptic observations of the Sun in four EUV (extreme ultraviolet) spectra: He I 584 Å, O V 630 Å, Mg IX 368 Å and Fe XVI 360 Å, over a 4 arcmin-wide strip along the solar central meridian. Using 53 active regions observed in this data set along with co-temporally observed SOHO-MDI (Michelson Doppler Imager) magnetograms we study the correlation of the chromospheric, transition region and coronal emission with the photospheric magnetic field for meridional active regions, probing the relation between the radiative output and magnetic observables. We also establish empirical, quantitative relations among intensities of different lines, and between intensities and the magnetic field flux.


1998 ◽  
Vol 167 ◽  
pp. 415-418
Author(s):  
Kirill M. Kuzanyan

AbstractThe main magnetic activity of the Sun can be visualised by Maunder butterfly diagrams which represent the spatio-temporal distribution of sunspots. Besides sunspots there are other tracers of magnetic activity, like filaments and active regions, which are observable over a wider latitudinal range of the Sun. Both these phenomena allow one to consider a complete picture of solar magnetic activity, which should be explained in the framework of one relatively simple model.A kinematic αѡ-dynamo model of the magnetic field’s generation in a thin convection shell with nonuniform helicity for large dynamo numbers is considered in the framework of Parker’s migratory dynamo. The obtained asymptotic solution of equations governing the magnetic field has a form of a modulated travelling dynamo wave. This wave propagates over the most latitudes of the solar hemisphere equatorwards, and the amplitude of the magnetic field first increases and then decreases with the propagation. Over the subpolar latitudes the dynamo wave reverses, there the dynamo wave propagates polewards and decays with latitude. Butterfly diagrams are plotted and analyzed.There is an attractive opportunity to develop a more quantitatively precise model taking into account helioseismological data on differential rotation and fitting the solar observational data on the magnetic field and turbulence, analyzing the helicity and the phase shift between toroidal and poloidal components of the field.


1968 ◽  
Vol 35 ◽  
pp. 127-130 ◽  
Author(s):  
S. I. Syrovatsky ◽  
Y. D. Zhugzhda

The convection in a compressible inhomogeneous conducting fluid in the presence of a vertical uniform magnetic field has been studied. It is shown that a new mode of oscillatory convection occurs, which exists in arbitrarily strong magnetic fields. The convective cells are stretched along the magnetic field, their horizontal dimensions are determined by radiative cooling. Criteria for convective instability in a polytropic atmosphere are obtained for various boundary conditions in the case when the Alfvén velocity is higher compared with the velocity of sound.The role of oscillatory convection in the origin of sunspots and active regions is discussed.


2020 ◽  
Vol 634 ◽  
pp. A36 ◽  
Author(s):  
D. Martínez-Gómez ◽  
R. Oliver ◽  
E. Khomenko ◽  
M. Collados

Context. Coronal rain often comes about as the final product of evaporation and condensation cycles that occur in active regions. Observations show that the condensed plasma falls with an acceleration that is less than that of free fall. Aims. We aim to improve the understanding of the physical mechanisms behind the slower than free-fall motion and the two-stage evolution (an initial phase of acceleration followed by an almost constant velocity phase) detected in coronal rain events. Methods. Using the MANCHA3D code, we solve the 2D ideal magnetohydrodynamic equations. We represent the solar corona as an isothermal vertically stratified atmosphere with a uniform vertical magnetic field. We represent the plasma condensation as a density enhancement described by a 2D Gaussian profile. We analyse the temporal evolution of the descending plasma and study its dependence on such parameters as density and magnetic field strength. Results. We confirm previous findings that indicate that the pressure gradient is the main force that opposes the action of gravity and slows down the blob descent, and that larger densities require larger pressure gradients to reach the constant speed phase. We find that the shape of a condensation with a horizontal variation of density is distorted during its fall because the denser parts of the blob fall faster than the lighter ones. This is explained by the fact that the duration of the initial acceleration phase and, therefore, the maximum falling speed attained by the plasma, increases with the ratio of blob to coronal density. We also find that the magnetic field plays a fundamental role in the evolution of the descending condensations. A strong enough magnetic field (greater than 10 G in our simulations) forces each plasma element to follow the path given by a particular field line, which allows for the description of the evolution of each vertical slice of the blob in terms of 1D dynamics, without the influence of the adjacent slices. In addition, under the typical conditions of the coronal rain events, the magnetic field prevents the development of Kelvin-Helmholtz instability.


Sign in / Sign up

Export Citation Format

Share Document