Hα and Hβ Imaging of the Planetary Nebula NGC 6302

1990 ◽  
Vol 8 (04) ◽  
pp. 360-363 ◽  
Author(s):  
Michael C. B. Ashley

Abstract NGC 6302 is one of the highest excitation planetary nebulae known. It has an obscured central star with a temperature estimated at 430,000 K. We present here CCD images in Hα and Hβ of NGC 6302, and interpret the differences between the images as being due to extinction caused by dust within the nebula. The dust appears to be concentrated in the core, as expected from infrared observations. There is no evidence of patchy foreground extinction, although there is a slight difference in the average extinction between the eastern and western lobes of the nebula. A comparison between the Hα image and a 5 GHz map gives a dust extinction of ΔAV~3.5 to the central star. The outer contours of the 5 GHz map are not in good agreement with the optical images, and further observations at this frequency would be useful.

1993 ◽  
Vol 155 ◽  
pp. 480-480
Author(s):  
C.Y. Zhang ◽  
S. Kwok

Making use of the results from recent infrared and radio surveys of planetary nebulae, we have selected 431 nebulae to form a sample where a number of distance-independent parameters (e.g., Tb, Td, I60μm and IRE) can be constructed. In addition, we also made use of other distance-independent parameters ne and T∗ where recent measurements are available. We have investigated the relationships among these parameters in the context of a coupled evolution model of the nebula and the central star. We find that most of the observed data in fact lie within the area covered by the model tracks, therefore lending strong support to the correctness of the model. Most interestingly, we find that the evolutionary tracks for nebulae with central stars of different core masses can be separated in a Tb-T∗ plane. This implies that the core masses and ages of the central stars can be determined completely independent of distance assumptions. The core masses and ages have been obtained for 302 central stars with previously determined central-star temperatures. We find that the mass distribution of the central stars strongly peaks at 0.6 M⊙, with 66% of the sample having masses <0.64 MM⊙. The luminosities of the central stars are then derived from their positions in the HR diagram according to their core masses and central star temperatures. If this method of mass (and luminosity) determination turns out to be accurate, we can bypass the extremely unreliable estimates for distances, and will be able to derive other physical properties of planetary nebulae.


2007 ◽  
Vol 3 (S242) ◽  
pp. 292-298 ◽  
Author(s):  
Yolanda Gómez

AbstractStars at the top of the asymptotic giant branch (AGB) can exhibit maser emission from molecules like SiO, H2O and OH. These masers appear in general stratified in the envelope, with the SiO masers close to the central star and the OH masers farther out in the envelope. As the star evolves to the planetary nebula (PN) phase, mass-loss stops and ionization of the envelope begins, making the masers disappear progressively. The OH masers in PNe can be present in the envelope for periods of ~1000 years but the H2O masers can survive only hundreds of years. Then, H2O maser emission is not expected in PNe and its detection suggests that these objects are in a very particular moment of its evolution in the transition from AGB to PNe. We discuss the unambiguous detection of H2O maser emission in two planetary nebulae: K 3-35 and IRAS 17347-3139. The water-vapor masers in these PNe are tracing disk-like structures around the core and in the case of K3-35 the masers were also found at the tip of its bipolar lobes. Kinematic modeling of the H2O masers in both PNe suggest the existence of a rotating and expanding disk. Both PNe exhibit a bipolar morphology and in the particular case of K 3-35 the OH masers are highly polarized close to the core in a disk-like structure. All these observational results are consistent with the models where rotation and magnetic fields have been proposed to explain the asymmetries observed in planetary nebulae.


Author(s):  
A. Danehkar

AbstractThe planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs ~ 2–3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are ~1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.


1993 ◽  
Vol 155 ◽  
pp. 477-477
Author(s):  
K. Volk

Four new calculations of planetary nebulae spectral evolution are presented, as in Volk (1992). These models use the 0.64 M⊙ central star evolution track of Schönberner (1983) but with the rate of evolution accelerated by a factor of 2, as the original models evolve to the planetary nebula phase too slowly to match the observations. Models were calculated for mass-loss rates of 2.1 × 10−5 and 5.2 × 10−5 MM⊙ yr−1 using solar composition and silicate dust, and using the average observed planetary nebula composition and graphite dust. An interacting winds shell was assumed to form. The model results were combined with an assumed Galactic distribution of 25000 planetary nebula to simulate a variety of observables including V magnitudes, Hβ fluxes, the IRAS colours, the 5 GHz radio flux densities, and the nebular radii.


1998 ◽  
Vol 11 (1) ◽  
pp. 363-363
Author(s):  
Johanna Jurcsik ◽  
Benjamin Montesinos

FG Sagittae is one of the most important key objects of post-AGB stellar evolutionary studies. As a consequence of a final helium shell flash, this unique variable has shown real evolutionary changes on human time scales during this century. The observational history was reviewed in comparison with predictions from evolutionary models. The central star of the old planetary nebula (Hel-5) evolved from left to right in the HR diagram, going in just hundred years from the hot region of exciting sources of planetary nebulae to the cool red supergiant domain just before our eyes becoming a newly-born post-AGB star. The effective temperature of the star was around 50,000 K at the beginning of this century, and the last estimates in the late 1980s give 5,000-6,500 K. Recent spectroscopic observations obtained by Ingemar Lundström show definite changes in the nebular line intensities. This fact undoubtedly rules out the possibility that, instead of FG Sge, a hidden hot object would be the true central star of the nebula. Consequently, the observed evolutionary changes are connected with the evolution of a single star.


1993 ◽  
Vol 155 ◽  
pp. 572-572
Author(s):  
C.Y. Zhang

We have selected a sample of planetary nebulae, for which the core masses are determined using distance-independent parameters (Zhang and Kwok 1992). The chemical abundances of He, N, O, and C are taken from the literature for them. Relationships of the ratios of He/H, N/O, and C/O with various stellar parameters of planetary nebulae (PN), such as the core mass, the mass of the core plus the ionized nebular gas, the stellar age and temperature, are examined. It is found that the N/O increases with increasing mass, while the C/O first increases and then decreases with the core mass. No strong correlation seems to exist between the He/H and the core mass. A correlation of the N/O and He/H with the stellar temperature exists. The current dredge-up theory for the progenitor AGB stars cannot satisfactorily account for these patterns of chemical enrichment in PN. Furthermore, the correlations of the N/O and He/H with the stellar age and temperature indicate that besides the dredge-ups in the RG and AGB stages, physical processes that happen in the planetary nebula stage may also play a role in forming the observed patterns of chemical enrichment in the planetary nebulae.


1989 ◽  
Vol 131 ◽  
pp. 411-424 ◽  
Author(s):  
F. D. Kahn

According to the multiple winds model a planetary nebula forms as the result of the interaction of a fast wind from the central star with the superwind that had previously been emitted by the progenitor star. The basic theory which deals with the spherically symmetrical case is briefly summarised. Various improvements are then considered in turn. A better history is clearly needed of the way that the central star becomes hotter, it is unrealistic to make the assumption that the superwind is spherically symmetrical, and finally there are likely to be important instabilities at some of the interfaces in the PN, notably that between the shocked superwind and the HII layer. These changes in the theoretical description produce a better understanding of the conditions in the outer parts of a PN and of the nature of its general shape, and they should lead to an explanation for the occurrence of high speed motions, and of highly ionized species and high excitation spectral lines.


2002 ◽  
Vol 185 ◽  
pp. 610-611
Author(s):  
P. Moskalik ◽  
G. Vauclair

AbstractWe summarize the results of an asteroseismological study of the pulsating planetary nebula central star RXJ 2117+3412.


1993 ◽  
Vol 155 ◽  
pp. 99-108
Author(s):  
C.Y. Zhang

The past decade has seen significant progress in our understanding of spectral energy distribution of planetary nebulae over the entire wavelength range from UV to radio. In this review we show the detailed breakdown of the energy budget for a planetary nebula as a system of the three components, i.e., the central star, the gaseous nebula and the dust shell. This picture of the energy distribution is further discussed in the context of planetary nebula evolution.


1995 ◽  
Vol 12 (2) ◽  
pp. 170-173
Author(s):  
Grant Gussie

AbstractA novel explanation for the origin of the cometary globules within NGC 7293 (the ‘Helix’ planetary nebula) is examined, namely that these globules originate as massive cometary bodies at large astrocentric radii. The masses of such hypothetical cometary bodies would have to be several orders of magnitude larger than those of any such bodies observed in our solar system in order to supply the observed mass of neutral gas. It is, however, shown that comets at ‘outer Oort cloud’ distances are likely to survive past the red giant and asymptotic giant branch evolutionary phases of the central star, allowing them to survive until the formation of the planetary nebula. Some observational tests of this hypothesis are proposed.


Sign in / Sign up

Export Citation Format

Share Document