scholarly journals A transformation-driven approach for recognizing textual entailment

2016 ◽  
Vol 23 (4) ◽  
pp. 507-534 ◽  
Author(s):  
ROBERTO ZANOLI ◽  
SILVIA COLOMBO

AbstractTextual Entailment is a directional relation between two text fragments. The relation holds whenever the truth of one text fragment, called Hypothesis (H), follows from another text fragment, called Text (T). Up until now, using machine learning approaches for recognizing textual entailment has been hampered by the limited availability of data. We present an approach based on syntactic transformations and machine learning techniques which is designed to fit well with a new type of available data sets that are larger but less complex than data sets used in the past. The transformations are not predefined, but calculated from the data sets, and then used as features in a supervised learning classifier. The method has been evaluated using two data sets: the SICK data set and the EXCITEMENT English data set. While both data sets are of a larger order of magnitude than data sets such as RTE-3, they are also of lower levels of complexity, each in its own way. SICK consists of pairs created by applying a predefined set of syntactic and lexical rules to its T and H pairs, which can be accurately captured by our transformations. The EXCITEMENT English data contains short pieces of text that do not require a high degree of text understanding to be annotated. The resulting AdArte system is simple to understand and implement, but also effective when compared with other existing systems. AdArte has been made freely available with the EXCITEMENT Open Platform, an open source platform for textual inference.

Author(s):  
S. Prasanthi ◽  
S.Durga Bhavani ◽  
T. Sobha Rani ◽  
Raju S. Bapi

Vast majority of successful drugs or inhibitors achieve their activity by binding to, and modifying the activity of a protein leading to the concept of druggability. A target protein is druggable if it has the potential to bind the drug-like molecules. Hence kinase inhibitors need to be studied to understand the specificity of a kinase inhibitor in choosing a particular kinase target. In this paper we focus on human kinase drug target sequences since kinases are known to be potential drug targets. Also we do a preliminary analysis of kinase inhibitors in order to study the problem in the protein-ligand space in future. The identification of druggable kinases is treated as a classification problem in which druggable kinases are taken as positive data set and non-druggable kinases are chosen as negative data set. The classification problem is addressed using machine learning techniques like support vector machine (SVM) and decision tree (DT) and using sequence-specific features. One of the challenges of this classification problem is due to the unbalanced data with only 48 druggable kinases available against 509 non-drugggable kinases present at Uniprot. The accuracy of the decision tree classifier obtained is 57.65 which is not satisfactory. A two-tier architecture of decision trees is carefully designed such that recognition on the non-druggable dataset also gets improved. Thus the overall model is shown to achieve a final performance accuracy of 88.37. To the best of our knowledge, kinase druggability prediction using machine learning approaches has not been reported in literature.


2020 ◽  
Author(s):  
Mazin Mohammed ◽  
Karrar Hameed Abdulkareem ◽  
Mashael S. Maashi ◽  
Salama A. Mostafa A. Mostafa ◽  
Abdullah Baz ◽  
...  

BACKGROUND In most recent times, global concern has been caused by a coronavirus (COVID19), which is considered a global health threat due to its rapid spread across the globe. Machine learning (ML) is a computational method that can be used to automatically learn from experience and improve the accuracy of predictions. OBJECTIVE In this study, the use of machine learning has been applied to Coronavirus dataset of 50 X-ray images to enable the development of directions and detection modalities with risk causes.The dataset contains a wide range of samples of COVID-19 cases alongside SARS, MERS, and ARDS. The experiment was carried out using a total of 50 X-ray images, out of which 25 images were that of positive COVIDE-19 cases, while the other 25 were normal cases. METHODS An orange tool has been used for data manipulation. To be able to classify patients as carriers of Coronavirus and non-Coronavirus carriers, this tool has been employed in developing and analysing seven types of predictive models. Models such as , artificial neural network (ANN), support vector machine (SVM), linear kernel and radial basis function (RBF), k-nearest neighbour (k-NN), Decision Tree (DT), and CN2 rule inducer were used in this study.Furthermore, the standard InceptionV3 model has been used for feature extraction target. RESULTS The various machine learning techniques that have been trained on coronavirus disease 2019 (COVID-19) dataset with improved ML techniques parameters. The data set was divided into two parts, which are training and testing. The model was trained using 70% of the dataset, while the remaining 30% was used to test the model. The results show that the improved SVM achieved a F1 of 97% and an accuracy of 98%. CONCLUSIONS :. In this study, seven models have been developed to aid the detection of coronavirus. In such cases, the learning performance can be improved through knowledge transfer, whereby time-consuming data labelling efforts are not required.the evaluations of all the models are done in terms of different parameters. it can be concluded that all the models performed well, but the SVM demonstrated the best result for accuracy metric. Future work will compare classical approaches with deep learning ones and try to obtain better results. CLINICALTRIAL None


2013 ◽  
pp. 937-947
Author(s):  
S. Prasanthi ◽  
S.Durga Bhavani ◽  
T. Sobha Rani ◽  
Raju S. Bapi

Vast majority of successful drugs or inhibitors achieve their activity by binding to, and modifying the activity of a protein leading to the concept of druggability. A target protein is druggable if it has the potential to bind the drug-like molecules. Hence kinase inhibitors need to be studied to understand the specificity of a kinase inhibitor in choosing a particular kinase target. In this paper we focus on human kinase drug target sequences since kinases are known to be potential drug targets. Also we do a preliminary analysis of kinase inhibitors in order to study the problem in the protein-ligand space in future. The identification of druggable kinases is treated as a classification problem in which druggable kinases are taken as positive data set and non-druggable kinases are chosen as negative data set. The classification problem is addressed using machine learning techniques like support vector machine (SVM) and decision tree (DT) and using sequence-specific features. One of the challenges of this classification problem is due to the unbalanced data with only 48 druggable kinases available against 509 non-drugggable kinases present at Uniprot. The accuracy of the decision tree classifier obtained is 57.65 which is not satisfactory. A two-tier architecture of decision trees is carefully designed such that recognition on the non-druggable dataset also gets improved. Thus the overall model is shown to achieve a final performance accuracy of 88.37. To the best of our knowledge, kinase druggability prediction using machine learning approaches has not been reported in literature.


2020 ◽  
Author(s):  
Adam Pond ◽  
Seongwon Hwang ◽  
Berta Verd ◽  
Benjamin Steventon

AbstractMachine learning approaches are becoming increasingly widespread and are now present in most areas of research. Their recent surge can be explained in part due to our ability to generate and store enormous amounts of data with which to train these models. The requirement for large training sets is also responsible for limiting further potential applications of machine learning, particularly in fields where data tend to be scarce such as developmental biology. However, recent research seems to indicate that machine learning and Big Data can sometimes be decoupled to train models with modest amounts of data. In this work we set out to train a CNN-based classifier to stage zebrafish tail buds at four different stages of development using small information-rich data sets. Our results show that two and three dimensional convolutional neural networks can be trained to stage developing zebrafish tail buds based on both morphological and gene expression confocal microscopy images, achieving in each case up to 100% test accuracy scores. Importantly, we show that high accuracy can be achieved with data set sizes of under 100 images, much smaller than the typical training set size for a convolutional neural net. Furthermore, our classifier shows that it is possible to stage isolated embryonic structures without the need to refer to classic developmental landmarks in the whole embryo, which will be particularly useful to stage 3D culture in vitro systems such as organoids. We hope that this work will provide a proof of principle that will help dispel the myth that large data set sizes are always required to train CNNs, and encourage researchers in fields where data are scarce to also apply ML approaches.Author summaryThe application of machine learning approaches currently hinges on the availability of large data sets to train the models with. However, recent research has shown that large data sets might not always be required. In this work we set out to see whether we could use small confocal microscopy image data sets to train a convolutional neural network (CNN) to stage zebrafish tail buds at four different stages in their development. We found that high test accuracies can be achieved with data set sizes of under 100 images, much smaller than the typical training set size for a CNN. This work also shows that we can robustly stage the embryonic development of isolated structures, without the need to refer back to landmarks in the tail bud. This constitutes an important methodological advance for staging organoids and other 3D culture in vitro systems. This work proves that prohibitively large data sets are not always required to train CNNs, and we hope will encourage others to apply the power of machine learning to their areas of study even if data are scarce.


2021 ◽  
Vol 11 (12) ◽  
pp. 1645
Author(s):  
Sumit K. Vohra ◽  
Dimiter Prodanov

Image segmentation still represents an active area of research since no universal solution can be identified. Traditional image segmentation algorithms are problem-specific and limited in scope. On the other hand, machine learning offers an alternative paradigm where predefined features are combined into different classifiers, providing pixel-level classification and segmentation. However, machine learning only can not address the question as to which features are appropriate for a certain classification problem. The article presents an automated image segmentation and classification platform, called Active Segmentation, which is based on ImageJ. The platform integrates expert domain knowledge, providing partial ground truth, with geometrical feature extraction based on multi-scale signal processing combined with machine learning. The approach in image segmentation is exemplified on the ISBI 2012 image segmentation challenge data set. As a second application we demonstrate whole image classification functionality based on the same principles. The approach is exemplified using the HeLa and HEp-2 data sets. Obtained results indicate that feature space enrichment properly balanced with feature selection functionality can achieve performance comparable to deep learning approaches. In summary, differential geometry can substantially improve the outcome of machine learning since it can enrich the underlying feature space with new geometrical invariant objects.


Author(s):  
Surbhi Agrawal ◽  
Kakoli Bora ◽  
Swati Routh

In this chapter, authors have discussed few machine learning techniques and their application to perform the supernovae classification. Supernovae has various types, mainly categorized into two important types. Here, focus is given on the classification of Type-Ia supernova. Astronomers use Type-Ia supernovae as “standard candles” to measure distances in the Universe. Classification of supernovae is mainly a matter of concern for the astronomers in the absence of spectra. Through the application of different machine learning techniques on the data set authors have tried to check how well classification of supernovae can be performed using these techniques. Data set used is available at Riess et al. (2007) (astro-ph/0611572).


Autism is a neuro-developmental disability that affects human communication and behaviour. It is a condition that is associated with the complex disorder of the brain which can lead to significant changes in social interaction and behaviour of a human being.Machine learning techniques are being applied to autism data sets to discover useful hidden patterns and to construct predictive models for detecting its risk.This paper focuses on finding the best machine learning classifier on the UCI autism disorder data set for identifying the main factors associated with autism. The results obtained using Multilayer Perceptron, Naive Bayes Classifier and Bayesian Networkwere compared with J48 Decision tree algorithm. The superiority of MultilayerPerceptron over the well known classification algorithms in predicting the autism risk is established in this paper.


Author(s):  
Guo-Zheng Li

This chapter introduces great challenges and the novel machine learning techniques employed in clinical data processing. It argues that the novel machine learning techniques including support vector machines, ensemble learning, feature selection, feature reuse by using multi-task learning, and multi-label learning provide potentially more substantive solutions for decision support and clinical data analysis. The authors demonstrate the generalization performance of the novel machine learning techniques on real world data sets including one data set of brain glioma, one data set of coronary heart disease in Chinese Medicine and some tumor data sets of microarray. More and more machine learning techniques will be developed to improve analysis precision of clinical data sets.


2012 ◽  
pp. 875-897
Author(s):  
Guo-Zheng Li

This chapter introduces great challenges and the novel machine learning techniques employed in clinical data processing. It argues that the novel machine learning techniques including support vector machines, ensemble learning, feature selection, feature reuse by using multi-task learning, and multi-label learning provide potentially more substantive solutions for decision support and clinical data analysis. The authors demonstrate the generalization performance of the novel machine learning techniques on real world data sets including one data set of brain glioma, one data set of coronary heart disease in Chinese Medicine and some tumor data sets of microarray. More and more machine learning techniques will be developed to improve analysis precision of clinical data sets.


2020 ◽  
pp. 294-306
Author(s):  
Surbhi Agrawal ◽  
Kakoli Bora ◽  
Swati Routh

In this chapter, authors have discussed few machine learning techniques and their application to perform the supernovae classification. Supernovae has various types, mainly categorized into two important types. Here, focus is given on the classification of Type-Ia supernova. Astronomers use Type-Ia supernovae as “standard candles” to measure distances in the Universe. Classification of supernovae is mainly a matter of concern for the astronomers in the absence of spectra. Through the application of different machine learning techniques on the data set authors have tried to check how well classification of supernovae can be performed using these techniques. Data set used is available at Riess et al. (2007) (astro-ph/0611572).


Sign in / Sign up

Export Citation Format

Share Document