How are words felt in a second language: Norms for 2,628 English words for valence and arousal by L2 speakers

Author(s):  
Constance Imbault ◽  
Debra Titone ◽  
Amy Beth Warriner ◽  
Victor Kuperman

Abstract The topic of non-native language processing has been of steady interest in past decades. Yet, conclusions about the emotional responses in L2 have been highly variable. We conducted a large-scale rating study to explicitly measure how non-native readers of English respond to the valence and arousal of 2,628 English words. We investigated how the effect of a rater's L2 proficiency, length of time in Canada, and the semantic category of the word affects how L2 readers experience and rate that word. L2 speakers who had lived a longer time in Canada, and reported higher English proficiency, showed emotional responses that were more similar to those of L1 speakers of English. Additionally, valence differences between L1 and L2 raters were greater in words that L2 raters do not typically use in English. These findings highlight the importance of behavioural ecology in language learning, particularly as it applies to emotional word processing.

2017 ◽  
Vol 7 (1) ◽  
pp. 47-60
Author(s):  
Kees De Bot ◽  
Fang Fang

Human behavior is not constant over the hours of the day, and there are considerable individual differences. Some people raise early and go to bed early and have their peek performance early in the day (“larks”) while others tend to go to bed late and get up late and have their best performance later in the day (“owls”). In this contribution we report on three projects on the role of chronotype (CT) in language processing and learning. The first study (de Bot, 2013) reports on the impact of CT on language learning aptitude and word learning. The second project was reported in Fang (2015) and looks at CT and executive functions, in particular inhibition as measured by variants of the Stroop test. The third project aimed at assessing lexical access in L1 and L2 at preferred and non-preferred times of the day. The data suggest that there are effects of CT on language learning and processing. There is a small effect of CT on language aptitude and a stronger effect of CT on lexical access in the first and second language. The lack of significance for other tasks is mainly caused by the large interindividual and intraindividual variation.


Author(s):  
Lara J. Pierce ◽  
Fred Genesee ◽  
Denise Klein

Internationally adopted (IA) children begin acquiring one language from birth (L1), but typically discontinue it in favour of their adoption language (L2). Language attrition occurs quickly with IA children unable to speak/understand their L1 within months of adoption. However, as adults IA test participants show certain advantages in this language compared to monolingual speakers never exposed to it, suggesting that certain elements of the L1 may be retained. Neuroimaging studies have found that IA participants exhibit brain activation patterns reflecting the retention of L1 representations and their influence on L2 processing. This chapter reviews research on L1 attrition in IA children, discussing whether/how elements of the L1 may be retained. It discusses how L1 attrition versus retention might influence subsequent language processing in the L1 and L2. Implications of language attrition versus retention patterns observed in IA participants for neuroplasticity and language acquisition are also discussed beyond this specific group.


Author(s):  
Giulia Bovolenta ◽  
Emma Marsden

Abstract There is currently much interest in the role of prediction in language processing, both in L1 and L2. For language acquisition researchers, this has prompted debate on the role that predictive processing may play in both L1 and L2 language learning, if any. In this conceptual review, we explore the role of prediction and prediction error as a potential learning aid. We examine different proposed prediction mechanisms and the empirical evidence for them, alongside the factors constraining prediction for both L1 and L2 speakers. We then review the evidence on the role of prediction in learning languages. We report computational modeling that underpins a number of proposals on the role of prediction in L1 and L2 learning, then lay out the empirical evidence supporting the predictions made by modeling, from research into priming and adaptation. Finally, we point out the limitations of these mechanisms in both L1 and L2 speakers.


2012 ◽  
Vol 2 (3) ◽  
pp. 95-124 ◽  
Author(s):  
Bor HODOŠČEK ◽  
Kikuko NISHINA

In this report, we introduce the Hinoki project, which set out to develop web-based Computer-Assisted Language Learning (CALL) systems for Japanese language learners more than a decade ago. Utilizing Natural Language Processing technologies and other linguistic resources, the project has come to encompass three systems, two corpora and many other resources. Beginning with the reading assistance system Asunaro, we describe the construction of Asunaro's multilingual dictionary and it's dependency grammar-based approach to reading assistance. The second system, Natsume, is a writing assistance system that uses large-scale corpora to provide an easy to use collocation search feature that is interesting for it's inclusion of the concept of genre. The final system, Nutmeg, is an extension of Natsume and the Natane learner corpus. It provides automatic correction of learners errors in compositions by using Natsume for its large corpus and genre-aware collocation data and Natane for its data on learner errors.


2020 ◽  
Author(s):  
Kun Sun

Expectations or predictions about upcoming content play an important role during language comprehension and processing. One important aspect of recent studies of language comprehension and processing concerns the estimation of the upcoming words in a sentence or discourse. Many studies have used eye-tracking data to explore computational and cognitive models for contextual word predictions and word processing. Eye-tracking data has previously been widely explored with a view to investigating the factors that influence word prediction. However, these studies are problematic on several levels, including the stimuli, corpora, statistical tools they applied. Although various computational models have been proposed for simulating contextual word predictions, past studies usually preferred to use a single computational model. The disadvantage of this is that it often cannot give an adequate account of cognitive processing in language comprehension. To avoid these problems, this study draws upon a massive natural and coherent discourse as stimuli in collecting the data on reading time. This study trains two state-of-art computational models (surprisal and semantic (dis)similarity from word vectors by linear discriminative learning (LDL)), measuring knowledge of both the syntagmatic and paradigmatic structure of language. We develop a `dynamic approach' to compute semantic (dis)similarity. It is the first time that these two computational models have been merged. Models are evaluated using advanced statistical methods. Meanwhile, in order to test the efficiency of our approach, one recently developed cosine method of computing semantic (dis)similarity based on word vectors data adopted is used to compare with our `dynamic' approach. The two computational and fixed-effect statistical models can be used to cross-verify the findings, thus ensuring that the result is reliable. All results support that surprisal and semantic similarity are opposed in the prediction of the reading time of words although both can make good predictions. Additionally, our `dynamic' approach performs better than the popular cosine method. The findings of this study are therefore of significance with regard to acquiring a better understanding how humans process words in a real-world context and how they make predictions in language cognition and processing.


2018 ◽  
Vol 14 (3) ◽  
pp. 621-631
Author(s):  
Sebastián Calderón ◽  
Raúl Rincón ◽  
Andrés Araujo ◽  
Carlos Gantiva

Most studies of emotional responses have used unimodal stimuli (e.g., pictures or sounds) or congruent bimodal stimuli (e.g., video clips with sound), but little is known about the emotional response to incongruent bimodal stimuli. The aim of the present study was to evaluate the effect of congruence between auditory and visual bimodal stimuli on heart rate and self-reported measures of emotional dimension, valence and arousal. Subjects listened to pleasant, neutral, and unpleasant sounds, accompanied by videos with and without content congruence, and heart rate was recorded. Dimensions of valence and arousal of each bimodal stimulus were then self-reported. The results showed that heart rate depends of the valence of the sounds but not of the congruence of the bimodal stimuli. The valence and arousal scores changed depending on the congruence of the bimodal stimuli. These results suggest that the congruence of bimodal stimuli affects the subjective perception of emotion.


2021 ◽  
Vol 55 (1) ◽  
pp. 1-2
Author(s):  
Bhaskar Mitra

Neural networks with deep architectures have demonstrated significant performance improvements in computer vision, speech recognition, and natural language processing. The challenges in information retrieval (IR), however, are different from these other application areas. A common form of IR involves ranking of documents---or short passages---in response to keyword-based queries. Effective IR systems must deal with query-document vocabulary mismatch problem, by modeling relationships between different query and document terms and how they indicate relevance. Models should also consider lexical matches when the query contains rare terms---such as a person's name or a product model number---not seen during training, and to avoid retrieving semantically related but irrelevant results. In many real-life IR tasks, the retrieval involves extremely large collections---such as the document index of a commercial Web search engine---containing billions of documents. Efficient IR methods should take advantage of specialized IR data structures, such as inverted index, to efficiently retrieve from large collections. Given an information need, the IR system also mediates how much exposure an information artifact receives by deciding whether it should be displayed, and where it should be positioned, among other results. Exposure-aware IR systems may optimize for additional objectives, besides relevance, such as parity of exposure for retrieved items and content publishers. In this thesis, we present novel neural architectures and methods motivated by the specific needs and challenges of IR tasks. We ground our contributions with a detailed survey of the growing body of neural IR literature [Mitra and Craswell, 2018]. Our key contribution towards improving the effectiveness of deep ranking models is developing the Duet principle [Mitra et al., 2017] which emphasizes the importance of incorporating evidence based on both patterns of exact term matches and similarities between learned latent representations of query and document. To efficiently retrieve from large collections, we develop a framework to incorporate query term independence [Mitra et al., 2019] into any arbitrary deep model that enables large-scale precomputation and the use of inverted index for fast retrieval. In the context of stochastic ranking, we further develop optimization strategies for exposure-based objectives [Diaz et al., 2020]. Finally, this dissertation also summarizes our contributions towards benchmarking neural IR models in the presence of large training datasets [Craswell et al., 2019] and explores the application of neural methods to other IR tasks, such as query auto-completion.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fridah Katushemererwe ◽  
Andrew Caines ◽  
Paula Buttery

AbstractThis paper describes an endeavour to build natural language processing (NLP) tools for Runyakitara, a group of four closely related Bantu languages spoken in western Uganda. In contrast with major world languages such as English, for which corpora are comparatively abundant and NLP tools are well developed, computational linguistic resources for Runyakitara are in short supply. First therefore, we need to collect corpora for these languages, before we can proceed to the design of a spell-checker, grammar-checker and applications for computer-assisted language learning (CALL). We explain how we are collecting primary data for a new Runya Corpus of speech and writing, we outline the design of a morphological analyser, and discuss how we can use these new resources to build NLP tools. We are initially working with Runyankore–Rukiga, a closely-related pair of Runyakitara languages, and we frame our project in the context of NLP for low-resource languages, as well as CALL for the preservation of endangered languages. We put our project forward as a test case for the revitalization of endangered languages through education and technology.


Technologies ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Ashish Jaiswal ◽  
Ashwin Ramesh Babu ◽  
Mohammad Zaki Zadeh ◽  
Debapriya Banerjee ◽  
Fillia Makedon

Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets. It is capable of adopting self-defined pseudolabels as supervision and use the learned representations for several downstream tasks. Specifically, contrastive learning has recently become a dominant component in self-supervised learning for computer vision, natural language processing (NLP), and other domains. It aims at embedding augmented versions of the same sample close to each other while trying to push away embeddings from different samples. This paper provides an extensive review of self-supervised methods that follow the contrastive approach. The work explains commonly used pretext tasks in a contrastive learning setup, followed by different architectures that have been proposed so far. Next, we present a performance comparison of different methods for multiple downstream tasks such as image classification, object detection, and action recognition. Finally, we conclude with the limitations of the current methods and the need for further techniques and future directions to make meaningful progress.


Author(s):  
Ekaterina Kochmar ◽  
Dung Do Vu ◽  
Robert Belfer ◽  
Varun Gupta ◽  
Iulian Vlad Serban ◽  
...  

AbstractIntelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we investigate how feedback in a large-scale ITS can be automatically generated in a data-driven way, and more specifically how personalization of feedback can lead to improvements in student performance outcomes. First, in this paper we propose a machine learning approach to generate personalized feedback in an automated way, which takes individual needs of students into account, while alleviating the need of expert intervention and design of hand-crafted rules. We leverage state-of-the-art machine learning and natural language processing techniques to provide students with personalized feedback using hints and Wikipedia-based explanations. Second, we demonstrate that personalized feedback leads to improved success rates at solving exercises in practice: our personalized feedback model is used in , a large-scale dialogue-based ITS with around 20,000 students launched in 2019. We present the results of experiments with students and show that the automated, data-driven, personalized feedback leads to a significant overall improvement of 22.95% in student performance outcomes and substantial improvements in the subjective evaluation of the feedback.


Sign in / Sign up

Export Citation Format

Share Document