A High Resolution Study of Alumina Supported Iridium Catalysts

Author(s):  
C. Stoeckert ◽  
B. Etherton ◽  
M. Beer ◽  
J. Gryder

The interpretation of the activity of catalysts requires information about the sizes of the metal particles, since this has implications for the number of surface atoms available for reaction. To determine the particle dimensions we used a high resolution STEM1. Such an instrument with its simple optical transfer function is far more suitable than a conventional transmission electron microscope for the establishment of particle sizes. We report here our study on the size and number distribution of Ir particles supported on Al2O3 and also examine simple geometric models for the shape of Ir particles.

1979 ◽  
Vol 4 (4) ◽  
pp. 473-477 ◽  
Author(s):  
Tetsuo Oikawa ◽  
Chikara Kimura ◽  
Kiichi Hojou ◽  
Norio Baba ◽  
Koichi Kanaya

Author(s):  
H. Koike ◽  
K. Ueno ◽  
M. Suzuki

A scanning image observation device has been developed for use in conjunction with the JEM-100B Electron Microscope, thereby enabling the microscope to function as a high resolution scanning EM in addition to its basic function as a conventioanl high resolution electron microscope. As a result, it is possible to observe three different types of image of the same specimen area; viz, secondary electron images, transmission scanning images and conventional transmission electron microscope images. It is also possible to detect strays and obsorbed electrons, so that, the combined instrument provides a means for obtaining a wealth of information about the specimen.


Author(s):  
R. H. Duff ◽  
S. L. Bender

With the introduction of solid state detectors having resolutions of 300 eV or better, the feasibility of an efficient, nongeometry dependent X-ray detector of high resolution became a reality. The use of X-ray detecting systems in conjunction with electron microscopes has been limited to the dispersive type which is highly dependent on geometry or to the gas flow proportional counter which has poor resolution. Recently, high resolution solid state detectors have been used with scanning electron microscopes; however, no use has been made of them in the conventional transmission electron microscope. The usefulness of an elemental analysis together with morphological and crystallographic information is obvious.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
S. Takashima ◽  
H. Hashimoto ◽  
S. Kimoto

The resolution of a conventional transmission electron microscope (TEM) deteriorates as the specimen thickness increases, because chromatic aberration of the objective lens is caused by the energy loss of electrons). In the case of a scanning electron microscope (SEM), chromatic aberration does not exist as the restrictive factor for the resolution of the transmitted electron image, for the SEM has no imageforming lens. It is not sure, however, that the equal resolution to the probe diameter can be obtained in the case of a thick specimen. To study the relation between the specimen thickness and the resolution of the trans-mitted electron image obtained by the SEM, the following experiment was carried out.


Author(s):  
H. Tochigi ◽  
H. Uchida ◽  
S. Shirai ◽  
K. Akashi ◽  
D. J. Evins ◽  
...  

A New High Excitation Objective Lens (Second-Zone Objective Lens) was discussed at Twenty-Sixth Annual EMSA Meeting. A new commercially available Transmission Electron Microscope incorporating this new lens has been completed.Major advantages of the new instrument allow an extremely small beam to be produced on the specimen plane which minimizes specimen beam damages, reduces contamination and drift.


Author(s):  
H. Rose

The scanning transmission electron microscope offers the possibility of utilizing inelastically scattered electrons. Use of these electrons in addition to the elastically scattered electrons should reduce the scanning time (dose) Which is necessary to keep the quantum noise below a certain level. Hence it should lower the radiation damage. For high resolution, Where the collection efficiency of elastically scattered electrons is small, the use of Inelastically scattered electrons should become more and more favorable because they can all be detected by means of a spectrometer. Unfortunately, the Inelastic scattering Is a non-localized interaction due to the electron-electron correlation, occurring predominantly at the circumference of the atomic electron cloud.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
K. Shi rota ◽  
A. Yonezawa ◽  
K. Shibatomi ◽  
T. Yanaka

As is well known, it is not so easy to operate a conventional transmission electron microscope for observation of magnetic materials. The reason is that the instrument requires re-alignment of the axis and re-correction of astigmatism after each specimen shift, as the lens field is greatly disturbed by the specimen. With a conventional electron microscope, furthermore, it is impossible to observe magnetic domains, because the specimen is magnetized to single orientation by the lens field. The above mentioned facts are due to the specimen usually being in the lens field. Thus, special techniques or systems are usually required for magnetic material observation (especially magnetic domain observation), for example, the technique to switch off the objective lens current and Lorentz microscopy. But these cannot give high image quality and wide magnification range, and furthermore Lorentz microscopy is very complicated.


Sign in / Sign up

Export Citation Format

Share Document